1 Multiple Linear Regression

1.1 Introduction

First it is important to differentiate between inference and prediction: in Inference we
are interested in the relation between the response Y and the covariates X7, .., X,,. More
specifically

e Which predictors are associated with the response 7
e What is the relationship between the response and each predictor ?

e Can the relationship between response and covariates be adequately summarized
using a linear equation, or is the relationship more complicated ?

Hence for intepretation purpose, there is a trade-off between the facility of interpreta-
tion and the complexity of the model e.g paramtrizing the relation as linear (yielding
linear regression) give a clear interpration of the parameter i.e the relation between Y
and X1, .., X,, whereas parametrizing f in ¥ = f(X) as a neural network gives a hard
time to intrepret the parameter "think black box model". The latter is in contrast
useful for prediction. There is also a trade-off in quality of prediction with respect to
the model complexity and the number of data we see. As the goal is to have a low error
on prediction we need to avoid overfitting on the data we see. In the extreme case of
fitting the function f perfectly to the data, we have fitted noise that is not taken into
account in the relation between Y and Xy, .., X,,.

1.2 Statistical Learning Framework

Definition 1. A statistical learning problem is a tuple (%, Z,D,l) where

o X is the class of functions h : & — Y and is called the hypotheses class (and h
is called a prediction rule, hypothethis or classifier )

o Z =X XY is the domain, where

— X is the state space of observation

— Y is the label space of observations
e D is a probability distribution on &
e [ is a measurable loss functionl: # x £ — R

The learner has to find a predictor h € Z wich minimizes the true loss (Risk)

R@(h) = E(w,y)wgl(h(x)a y)) (1)
Note that @ = 2% x  2Y* is unknown. Hence we cannot compute the true risk.

Unknown

For this the learner has access to data sample § := {(z1,41), ..., (Tn,yn)} € (L X ¥)"
draw 7id with respect to @. Given that sample the learner has to find an algorithm

A Unen(X X %)™ — H that returns an estimator hs := o (S§). Note that the under-
lying distribution is still unknown, hence a common method is to use a proxy i.e the
empirical distribution (or measure) yield the ERM methods

R(hs) =Bsoo,0y @ [U(hs, )]

unknown
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Note: This is equivalent to the decision theoritic framework, and notation migth change
in this document in order to mathc the literatur.

Notice the following two main interesting loss

e 0-1 Loss: assuming % = {1,...,k} this corresponds to a classification problem
(binary if & = 2) then an intuitive cost function is the 0-1 loss i.e
lofl(h, Z) = H{h(ac)#y} which yield

A 1
Ro(h) = Plyyoa(h(@) £) and Re(h) 3 Tnionn (6)
i€[n]

e Regression and square Loss: in case % = RY the task is called a regression task
(see later chapter) where in this case the squared loss is used I(h, z) := (h(x) —y)?
which yield

1

Ry (h) = E(z yna(h(z) —y)* and  Rs = - > (i) — i)

i€[n]

(7)

Also note that in Garantees for machine learning we define the Exess Risk as follow

&(hs,h™) = Rg(hs) — inf Ro(h) (8)

where h* defines the true underlying rule h* : & — %. whre we developped methods
to control this excess risk.

1.3 Basics of Regression Analysis and prediction task

Given the settup in the last section we aim at predicting Y given X where Y depends
non trivially to X. As in the last section this boils down to finding a measurable
map g : & — % such that g(X) is close to Y ie Z = |g(X) — Y| is small. But as
both quantity are random variable, it is not clear what is the right notion of close-
ness. A somewhat arbitrary idea of small is to define a random variable Z small if

EZ®> = (EZ)? + var(Z) is small, meaning that the mean of the
~—
mean fluctuation around the squared mean

random variable is small as well as the fluctuations around the mean.
Fitting this idea with last paragrgaph we notice that it corresponds to the notion of
risk i.e for any measurable function g : & — R the [ risk is

Ry (9) = E(Y — g(X))? 9)



where we assumed ¢ = 1 or equivalently % = R. Now a natural question is what is
the best measurable function ¢ i.e the one minimizing the L2 risk ? the answer is

foest(@) =Egua [Y[X =2] VzeX (10)
Proof:
Assume Z with EZ < oo and var(Z) < oo then
arg mi}gE(Z —a)? = EZ® — 2aEZ + o® (11)
a€
“ (12)
0 2 2
%(EZ —2aEZ + a%)ja=q,;, =0 (13)
“ (14)
min = EZ (15)
Now we can rewrite the 12 Risk as follow
in R = inEx v(Y — ¢g(X))? 16
arg min 2(g) = arg min x, v (Y — g(X)) (16)
= argmin ExEyx (Y — ¢(X[X))? (17)
gEeY ———
=:a€R
& (18)
Imin(X) = frest(X) = Egyle [X|X} =: Regression function (19)
0. (20)

Hence our goal is to have an estimate of the regression function. Taking any estimator or
algorithm fg := o : Upen(T X Y)" = H given 8 := {(21,91), s (Tns Yn)} € (LT XY)"
where now we need to choose # with objective to approximate Egy= [X|X] we can
decompose the 12 risk as follow

2

Ry(fs) = Eo[Y — frest(X) + f(X) — £5(X)] (21)
2 ~
= E@ [X - fbest(X)] + ||£<§’ - fbestH% (22)
deterministic and irreductible random
hence as a measure of quality we are interesting in the quantity
H£§ - fbestH% = /&ﬁ@s - fbest)QdPl = ||£§ - fbestH%,z(Pl) (23)

Note that one of the biggest advantage of using the square loss is that our function
space is a Hilbert space ! Hence as we will show later in linear regression, we will make
extensive use of orthogonality.

Note that we aim that the quantity of interest goes to Zero as n — oo
Hence defining a sequence of positive numbers {¢,— 00 }n — 0 we bound the random
quantity of interest as follow

e Bounds in Expectation: E§n||f§n — frest||2 < ¢n represent the average be-
haviour of the estimator for several sample of size n But notice that this
bound does say anything about the deviation of the random quantity hence follows
the above bounds

e Bounds with high probability: ]P[”ign — foestll3 > ¢n(8)] < & in this setting the
bounds control the tail of the quantity if interest. Usually favored in learning
theory or PAC learning

e Bounds with high probability: the above bounds usually follows from concentra-
tion around the mean of the quantity i.e P[HL;n — frestll2 — Ellfs, — foestll2 > 1]

Such techniques were studied in the courses

e Algorithmic foundations of Data Science

e Guarantees for Machine Learning

1.3.1 Random Design

The random design corresponds to the statistical learning setup as described in the
last sections. Assume the model

y,=fx)+te
then let Spny1 := {(y,,X;) biepn] U(Xn+1’§"+1) of iid samples drawn from 2. Using &,
—_——

‘ € ~ (0, 02) (24)

29
=:Sn
the goal is to construct a function f, such that f,(x, 4+1) is a good predictor of Y1
Keep in mind that to construct our estimator only a realisation of the sample up to n

is know /used i.e 5 = &,. A good measure of performance for a given &y = &, is L2
risk as described in the first section:

R(fn) = E[X,H_l - fn(§n+1)]2 = E[Xm-l - f(§n+1)]2 +||fn(§n+1) - f(§n+1)||2L2(Pm,

n+1)

=02

(25)
where P,

ensq 18 the marginal distribution of x,, ;.

Interpretation: the squared L2 norm ||f(§n+1) - f(§n+1)|\%2(1) ) measures how close
_— Tp41

fn is to f in average over the realizations of x,, | i.e how good is the prediction of Y1
in average over the realisations of x,,

1.3.2 Fix Design

In the fix design we assume that the vectors zi,...,z, are deterministic. Of course
one could see x1,..,x, as realisations of random variables. But their is a fundamental
difference in performance measure, here we don’t have such thing as the marginal over
X, .1 Since the design points are considered deterministic our goal is to estimate f
only at these point. This problem is sometime call denoising since we aim at recovering
the f(z1),..., f(zy) from noisy observations. We can define the fix model as follow

y=n'+e | ui=flz) ¢~H00% (26)
yeR? p*eR? (27)
we define the quality of measure known as the Mean Squared Error
n 1 R 2 1. * (12
MSE(fa) = — > (Falws) = f(@0))* = ~ [l = wll3 (28)

1€[n]



1.4 Theory of Linear Regression
1.4.1 Multiple Linear Regression in Compact Form

Model given X = X = [x1, ..., x,]:

=R ¥=R! BeR! X;e{AecR™|rank(A)=min(q,d)} (29)
€ ~iia /(0,X) ¥:Z =R"— R?P(feature map) r,q,d €N (30)
then we assume the linear model
y,=XiB+e=V(z;)B+¢ Vien] (31)
with hypotheses space
H = {z— U(z)8ly : R" — R4 B e R} (32)

MLE:  Given iid sample 8y = {(Xj,¥i) }ie[n) ~ sz’” = Pg . We notice that maxi-
mizing wrt to 3 mle of §»|X = X and &, yield the same programm (random and fix
design). Also recall that in the statisical learning framework in section 1 we assumed
that 2¥/* was the unknown part of the distribution. Hence now we have assumed some
model class or hypotheses testing class paramtrized by 5. In the above model we assume
gaussian distribution which yield

(33)

<

hence knowing it is continous wrt to the lebesgue measure we can write the Likely-
hood function as follow

ZsaxB) = 1] Frxis.m @) (34)
i€[n]
_ _ 1 1
= H (27) =92 det(%) 1/269019( - 5(% — X:B)"'S7 (@5 — XiPB)) (35)
i€[n]
Now taking the maximum yield
Bure = arg max logZs, x(8) (36)
BERE -
1
= arg max const — — Z 12725 — X:8)|)? (37)
AeRS 2
1 1/~
=g 3 IS G- XA (3)

we have a sum of convex functions which is again convex over a convex domain, meaning
a global minimum exists and is attained at V(-)|g=g,,., = 0 i.e

1
Vommne{s D IZ72@ = XiB) |2} = Y- (-2XT£71, +2X7 571 X,8) = 0 (39)

i€[n] i€[n]
& (40)
BMLE = ( Z X,'TEAXi)T(XiTzfl?QO (41)
1€[n]

Note: Here we assumed X; to have full rank, hence the pseudo inverse is an inverse as
Y is psd matrix

Note that when ¢ = 1 we have the more standard form

Y, <Xzaﬂ> +e= W(lﬂz),@ +e (42)
Y = X Bte | X=[(a1), . p(za)]” (43)
(44)

1.4.2 Multivariate Linear Regression

Model:

1.5 Theory of Hypotheses Testing

The goal of hypotheses testing in a statistical testing problem is to decide wether a
hypothese that has been formulated is correct or not. The choice lie between two deci-
sions, accepting or rejecting the hypotheses. A decision procedure aiming at deciding
wether or not a hypothese has to be rejected is called a test of the hypotheses.

1.5.1 Modeling the Problem

Let x : (,4,P) = (Z,%) be a random variable, (2, %,P) a probability space and
(2, AB) a measurable space. The random variable x induces a probability measure P,
on (X, B) given by P,(B) = P(x(w) € B) VB €A Vw € Q. Assume the distribution
of x to be parametrized by some unknown 6 and belonging to some parametrized family
of distribution i.e

P,=Pyc®:={P:0c6}

The decision procedure to accept or reject a hyptohese has to be based on realisations
of x. Defining the hypotheses Hy : 8 € Oy and the alternative H; : § € ©; with
O =0yUB1;00NO; = (. Note that we could also define an hypotheses as follow
g:0—-T ;Hy=vel; 6e{dec0y:g(®) =} (45)
for sake of simplicity we model g as the identity in this document. As the procedure
has to be made on realisations of x we can divide the space & in the following regions

L =8U& (46)
So:={r eI st Hy istrue} = acceptance region (47)
S :={r eI st Hy isrejected} = rejection region (48)

Definition 2 (critical function). A critical function ¢ is any function of the form
o(x) €[0,1] VeeX

Definition 3 (test function). A test function is a critical function ¢(x) such that
Ve € X we accept Hy w.p 1 — ¢(x) and reject Hy w.p ¢(x)



A test can made two type of errors: accepting Hy when it is actually wrong or
rejecting Hy when it is actually true. This can be summarised as follow

Definition 4 (Error Type-I). "Rejecting when True": for 8 € ©Oqg the function
0 — Egop(x) is called type-I error

Definition 5 (Power). The power of a test procedure is defined as : for 0 € ©1 the
function B0 = 0 — Egp(x) is called the power of the testing procedure. "Think: how
powerful the test is for rejecting Null HypOtheses when actually wrong”

Definition 6 (Error Type-II). "Accepting when False": the function 1 — 3(0) is called
error of type-1I

Randomised Test: given x = x and ¢(z) € [0,1] a random test is defined as:

do wp 1—¢(x) _
s ={ & v 8(z) ~ Ber(1 - 6()) (49)
dy = decision to accept Hy (50)
dy = decision to reject Hy (51)

The term random means that the experiment producing the outcomes decision dy and
dy is random, explaining why the decision are accompanied by probabilities.

We notice that the test is completly characterized by the test function ¢. Let us show
the probability of error type - I for a randomized test "assume 6 € ©¢ and reject Hy"

Pr{(x) =di} = EsxI{d(x) = d1} (52)
= ExEsjx=-1{0(z) = d1} (53)
= EiPr{é(x) = dl} (54)
= Ex¢(x) (55)
= Ego(x) (56)

Non-Randomised Test: given x = = and ¢(z) € {0,1} the same settup as before
yield a non randomised procedure:
wp 1-—¢(x)

d
5(33):{ d(l) wp  o(x)

The test is no longer "random" as ¢(z) takes 0 or 1 meaning that the underlying ex-
periment outputs decisions to accept or reject the hypothese (do,d;) with probabilities
either 1 or 0. The error of type-I is as follow

(57)

Pr{d(x) = di} = ExI{3(x) = du} (58)
= Epop(x) (59)
we also notice
Baolx) = | ow)iP(a) (60)
= / 0dPy (x) + / 1dPy (33) (61)
So S$1
= ]I{l‘ S Sl} (62)

were the error of type - I corresponds then to the indicator of the rejection region.

Goal: given the above settup we wish to control for error of type-I and type-II i.e find
a function ¢ sucht that

sup Eggp(x) <a | a€(0,1) (63)
[ASCN

and (64)
B(0) is maximal VO € © (65)

1.6 Statistical Modelling for Linear Regression

1.6.1 Gramm Schmidt and Multiple Regression from single Regression
e ESLII
e stat modelling slides and maelm summary



2 Non-parametric Density Estimation
e Good notes
e script compt stat 2023 (very summarized)

e Elements of computaitonal statistics




3 Non-parametric Regression

e Theory of statistics
e ESL

e Introduction to non parametric estimation




4 Classification

Book: All of statistics (math compact)

Book: Intro to Statistical Learning (well written applied)

mathematics tool for ML (theory)

Wikipedia for proof of bayes classifier very good

(https://en.wikipedia.org/wiki/Bayes_classifier)



https://en.wikipedia.org/wiki/Bayes_classifier

