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1 Preliminaries:

1.0.1 Ex 15.18 Wainright

The content in this section is strongly related to the example 15.18 in the book "High Dimensional Statistics"

1.1 M-ary Hypotheses testing

Note: P{x} denote the prob of the event whereas P(x) =: Px(xz) is the distribution
Assuming the following family of distribution

P = {]ng| Gj €0:= {91,...,01\4}} (1)
An M-ary testing problem defined by P and the following

J ~ Uni{[M]} (2)
Z~ Pgi (3)

Defining a testing function ¢ : Z — [M] we have to following error event with probability taken jointly over (Z,J)

Q{v(2Z) # I} (4)
where Q denotes the joint distribution of (Z, J)
Note: the marginal distribution of Z is
Q=) QzJI=j)= ) QzZJI=5HeJ =) (5)
je[M] FE[M]
1
=2 Pooy; 6)

Note that Q[Event(Z)] takes event from o(Z) i.e does not depends on J .
Meaning that the data generated by the rv Z have a mixture distribution

1.2 Fano’s Inequality
1.2.1 Measure Theory background

Abslute Continuity of Measures: Let v, be two measures on the same measurable space (S,.A4). The measure v is
absolutly continous wrt the measure p written

v<<pu <= pu(A)=0= v(4)=0 VAcAd

Radon-Nikodym Thm:

Let p and v be measures on (5, .A) s.t v << p, then there exists a A—measurable function f : S — [0oco) such that for any
measurable set A C S we have

_dv

v(A) = / fdu or the radon derivative:  f:= —
A dp

Chain Rule: Suppose the measures v, 1,7 on the measurable space (S,.A) s.t v << p << 7 then

dv dv dn
@(3) = %@(5) a.e[n]

1.2.2 Information Theory background

dP
KL divergence: D(P||Q) = Eploggy when P<<Q
0 else
dP d
KL with densities: P, Q << vwith densitiessp = —,q = aQ D(P||Q) = / p(x)log(w)l/(dm)
dv dv X q(x)
KL Tensorization for P; << Q;Vj € [n] D(®jemPjll ®jem Qj) = Z D(P;]|Qy)
J€[n]
Mutual Information: I(Z,J) := D(Qz,4||Qz ® Qy)
Shannon entropy:
. d
Given X~ Q<< p £ =:q H(Q) = H(X) = —Exlogqg(X) = */ q(w)logq(z)u(dx)
x
Conditional Entropy: H(X|]Y) =EyHQxy) = EX/ q(z|Y)logg(z|Y)u(dxr)
X
Chain Rule: H(X,,...X,) = Z H(X Xy, X 1)
i€[n]
Mutual Information and Entropy IX,Y)=HX)+HY) - HXY|X)

Notice for the mutual information

dQz.4
dQzdQj
dQgz)3dQg

dQzdQ3z
=E3D(Qgz5/Qz)

I(Z,J) := D(Qz3||Qz ® Q3) = Ez slog

= EjEz)log



1.2.3 Fano and M-ary Testing Intuition

Recall in M ary testing problem our observation Z ~ % > Je[M] Py; i.e follows a mixture distribution and the goal is to
recover from which index J = j a given observation Z = Z has been drawn. In the extreme case where Z |l J observing Z
has no value to our problem. A way of measuring the "amount" of depedence between rv is mutual information I(Z,J) > 0.
Given our setting we can write the mutual information in the following way

1(Z,d) = E3D(Qgz5/|Qz) (7)
— 31 3 DEwl®) (8)
JE[M]

Meaning the mutual information is small if the distributions Py; are hard to distinguish from the mixture distribution Q on
average.

1.2.4 Fano’s bound for M-ary testing problem

Lemma 1.1 Fanno

Given the M-ary testing problem setting from section 1.1 Fanno’s Lemma says

I(Z,J) +1og(2)

Qv AN} 21 - == ar

Proof. The Proof of Fanno’s lemma is skipped and can be found in Wainright book’s [2]. A proof that I personally liked can
be found in Giraud’s book [1] @ O

Lemma 1.2 Mutual Information Bound for Z|J ~ Q(,,02)

1 1
1(Z,J) < i{log det cov(Z) — i 'gﬂ log detEj} (10)
j

Proof. This lemma comes from Wainright [2] @ O

1.3 Minimax Lower Bounds for Sparse Linear Regression Recovery Problem
1.3.1 Goal

"

"Give a lower bound on any procedure (Algorithms) for recovering the support of § depending on (n, 8, |Supp(8)])".

1.3.2 Setting

Consider the following setting

x; ~ N(0,I45q) Vi€ [n] (11)
e, ~N(0,0%) Vien] (12)
y, = (x,0") +¢ (13)

We assume the data to be iid distributed i.e
( y)~iid Py ePi={Ps0c6} (14)
{ XY, }ze[n] ~ ®i€[n]P9* =: Py~ (15)

We also define the matrix form

Y, = (Zp >Xn) X, = [51’ "'7§n]T (16)
Y, = X,0" +¢ (17)

where 0* € S(k,d) =: ©
and S(s,d) := {6 €RY; |0lo =5 <<d; 0; >0min Vj € supp(6)}}

1.3.3 Minimax to M-ary testing

Assume (Pg)geco a set of Prob distribution on a measurable space (D,.A). We have access to an observation (Yyn,Xy) =

D, € D with D, ~ Py. The goal is to recover the support of § from D,, with measurable map S:D— supp(©). We define
the following metric on ©

{S(D,,) # supp(0) } (18)
Recalling that minimax risk correspond to the best poss1ble error uniformly over the class © we have
inf sup IEPG]I{S D,) # supp(f)} = (19)
S: D—supp(©) €O
inf sup IP’@{S ) # supp()} (20)

S:D—supp(©) €O

We can define the following finite subset @M C O as follow

oM .= {91 € S(k,d); 0% = Opun V) € supp(6') Vi€ [M]:= [(Z)]; supp(6') € rk} (21)



where

)= {T; Tc{l,..,dy; |T|= k} (22)
Notice that
d M
Tl = (}) =M =e™ (23)
and recall that

We have the following lemma:

Lemma 1.3 Mininmax to M-ary Testing Problem for Sparse Linear Regression Support Recovery

Given the above setup the minimax risk can be lower bounded by a quantity corresponding to an M-ary testing
problem:
inf sup IF’g{S ) # supp(6)} > inf Qs p {S n) #J} (25)
S: D—supp(©) 0O S:D—>supp(®)
where
3 ~ Unif[Ty] (26)

Proof. we can lower the minimax setting as follow:

inf  supPy{S(D,,) # supp(6)} > inf max Py{S(D,,) # supp(6)} 27)
S:D—supp(©) 6O S:D— supp(©) 0€OM
= inf max Pgu{S(D su 28
S:D—supp(©) supp(Ol)er‘k o! { 7& pp( )} ( )
> R inf Pez S D, 7é Sl ‘ Sl = Supp(ﬁl) (29)
S:D—supp(©) | k| SZGZF { }
(30)

Now we notice that the last equation has the same form as an M-ary testing problem

J:= 8!~ Uni[ly] (31)
Z:=D, ~Peq_; (32)
Si=1:Z:=D Ty (33)
Q(J,2) =Q(s.,D,) (34)
hence we can write
N X PuldD,) # 51 (35)
= inf Qip, {S(Dn) # 3} (36)

where QQ denotes the joint distribution over D,, and J.
Note: for a fixed S! € T'), corresponding to the I** subset we have a unique 6! € ©M which allow 35 to be true i.e f1 = S!

where both follow the same distribution uniformly over a discrete set of the same size. This uniqueness motivate the choice
of |0M| = (i) if we choose a discretezition of © with more vector than (i) uniqueness of 6! would be brocken.

Note: Eq 36 is true because of the following

> Pu{S(Dy) #S5'} = Z@Z.J{z?ﬁm:j} (37)
|F’“| SieTy jeJ

- /J Q23 {Z # 313 = j}d0y{J = j} (38)

=Es [@gg{z # l}] (39)

= E; [Egy |12 # )] (40)

= Ez;[I(Z #]] (41)

= Qza{Z # 3} (42)



1.3.4 Fano’s method

In order to use fano’s method we will condition on a particular instance of the Design matrix X, = {z;};cn) =: X, and
J ~ Uni[M].

Claim 1.1 Applying Fanno to Lemma 1.3

A direct application of Fanno’s Lemma 1.1 tp lemma 1.3 yield the following lower bound for the minimax risk

Ex,I(Yn,J|X,) + log2

inf supPy{S(D sU; >1- 43
S:D—supp(©) Geg 6{ 7& pp )} - IOgM ( )
Proof.
. inf QD J {S 7é J} inf QYn,Xrnl{S(ﬁ’ 7“) 7& J} (44)
S:D—supp(©) S$:D—ssupp(®) —
= inf  Ex,Qy, g%, {8(Yn Xn) # IXa = {z:}ical } (45)
S:D—supp(©)
Ex.I(Ya,JX,) + log2

 Ex.I(Yn, JIX,) +1log (46)

logM

Notice the condiserable advantage of fanno’s bound; it is procedure independent i.e independent of S(Qn)

Hence we are interested in upper bounding the term

Claim 1.2 A Upper Bound on /(Y,,J|X,)

Given the setup in section 1.3.2, the mutual information I(Yy,J|X,,) can be upper bounded as follow

i€[n]

Proof. Given the setting in section 1.3.2 we have for a given observation x, = x; the following model for the output variable
Y.

T

(y,|x; =) =y = (xi,02) +¢, YV, € X (48)
hence the distribution over X? is
Q)= [ Quptll =)0 =) (49)
y ieq ¥
1 .
= Z ng;('g =J) (50)
JE[M]
1
=" D Qs 03=1,02) () (51)
JEM]

also notice that y%: a ﬁj Vi # j but we have (Xf

J) AL (Xf’ |[J) Vi # j because of the setting assumptions.

We can upper bound the mutual information I(Y,,,J|X,,) as follow

I(Xnvl|xn) = H(Xla ’Xn‘xn) - H(Z]? 7Xn|lvxn) (52)
=t Hx,(y,,-Y¥,) — Hx (y,:-Y, J) (53)
= Z Hx,(y,ly,s-y, ) —Hx.(y,,--»¥,[J) Chain rule (54)
1€[n]
< Z Hx,(y,) — Hx,(y,:- ¥, |J) Conditioning reduces Entropy (55)
1€[n]
= Z Hx,(y Z Hx,(y,/J) Chain rule and Independence (56)
i€[n] i€[n]
=Y Hx,(y,) - Hx,(y,ld) (57)

Claim 1.3 An Upper Bound on I(y  J|x;)

Using lemma 1.2 we obtain the following upper bound on [/ (Xi’ J|x;)

Iy, i) < 2 {1ogm ) (60




Proof. We notice that J ~ Uni[M] and (y |J = j,x; = z;) ~ N ((zi, 03=7),0%) hence due to lemma 1.2 we have

1 1
=) =:1,. < = Tiy Ti|J = 4 .
Ny, dIx; = i) = I, (y,;, J) < 2{log var (y?*) Y Z log var (y7*|J ])} Va, € X (61)
JE[M]
1, var(y?)
(63)

Lemma 1.4 Final Minimax Lower Bound for Sparse lin. Reg. Support Recovery

Using claims 1.1, 1.2,1.3 as well as lemma 1.3 we have the following minimax lower bound in term of the parameters
emin’ ka da 025 n

2l log2
inf sup IP’@{S )>1-— og( i) + log (64)
8:D— supp(©) 6O log(k)
Proof. Recalling J ~ Uni[M] and (y,|J = j,x; = x;) ~ N({x;,6?=7),5°) hence due to lemma ?? we have
Iy, d|x; = i) = I, (y,;,J) < L log var (y7") — L log var (y7'|J =j)¢ Va; €X (65)
2 M
JEM]
1 var(y?”)
= (67)
1 var(y®)
< — =t .
3 Ly, d) _22{log 5 } Vo, € X (68)
i€[n] i€[n]
As the data (x;,y;) are IID we have
I(Y,,JX,) < ~lo var(y, <) (69)
A L|n) = 2 g 0_2
Recalling that we aim at lower bounding the average over X,
Ey var X
Bx 1(Y, JIX,) < o2 0 %1) (70)
= 2 o?
Using concavity of log and Jensen. Writing more explicit we need an upper bound on
Ex, var(y, (J)[x;) < Ex By i, |Y [_ J )2|ﬁ] Def. of Variance (71)
Recall  (y, (J)lx; = 21) = (21,6%) + ¢ (72)
IEX1 lx, {X1 (l)2|x1} EsEy Ix,.d [y X1, } Iterated Expectation (73)
Recall  (y, [x; =z1,d =j) = (x1,607) + ¢, (74)
— (75)
By, var(y, (3)[x,) < Bx, BBy [ ((@1,6) + €))’] (76)
= Ex, BgE[((21,6%) + 7] (77)
= EKIEJEE[TT{J}’{Gj @60z} + 2,27 07 + gﬂ (78)
=Ey Ey [Tr{fol ® Glxl}} + o2 See noise dist. (79)
= Ex, T’I“{X{El[el ® 94]51} + o2 (80)
Due to the distribution of J we have
1 . .
J J _
Ey0" © 6% = _Z 7 6 (81)
JEM]
== (82)
1 ; ; 1 . ;
i Z EKITT{X{OJ ®0x,}+o* = i Z Tr{#’ ® ¢Ex x, @ %} +0° (83)
JeM] JEM]
1 . .
=] Z Tri{¢’ @ 67} + o* Isotropic Gaussian Covariates (84)
Jje[M]
Recalling eq. 21 we have
0 c M = Tr{¢? @67} = kb2, Vj<c[M] (85)



Hence we have

Ex, var(y, (J)[x;) < kb, + 0 (56)
— (87)
Ex var(y. |x
Ex, I(Y,.J|X,) < Elogw (58)
X, 5 —
n. kO%. +o°
< Zlog—Smin _ * 89
-2 o ( )
= (90)
S Zlog(1 + Mimin ) 1 1og2
inf S(Dn) #J} >1- o1
S$:D—supp(©) QE”’J{*(—) 7 } logM (91)
Moreover
S Slog(1 + “Z=) + log?
inf Sy £J) >1- 0
S:D—supp(©) Op, 2{S(Da) # I} logM (92)
— (93)
Blog(1 + “min) 4 log2
inf supPy{S(D supp( >1— o
S$:D—supp(©) 6O 9{ n) 7 )} IOgM (94)
Ok
1.4 Results

Result 1.1 A Lower on the number of data needed to be better than fully random decision process

In order for any procedure or algorithm to achieve a probabilty of error in the recovery process below 1/2 we need at
least

log(d) + log(2)

(95)
" Tog(1+ o)
data.
Proof. From lemma 1.4

1

- > inf J 96

2 S: :D—supp(O) 77”‘]{ 7& } ( )

Zlog(1 + "”") + log2
>1- 97
- logM (97)
= (98)
log(¥) + log(2

2
log(1 + L;gm )

2 Lower Bound for Sparse Causal Estimator

2.1 Goal and Problem Description

Assume a data set of patient’s covariates (think: blood analysis, symptomatic, etc...) drawn from some population. We
give treatment with a certain probability to this population set and we observe the outcome variable on both patient with
treatment and without. Further assume an estimate of the difference of effects between the two groups (treatment vs no
treatment) which is assumed to be sparse. The goal is to show a lower bound on any procedure (algorithm) for recovering
the support of the difference in treatment effect.

2.2 Formalism

Sparse Vector space: S(s,d) := {0 eRY |0l =s<<d; 0;>0pmin Vi€ supp(@)}}

2.2.1 Model

T, ~ Ber(p) ieT, €{0,1} (100)

& '~ N0, %) (101)

il '~ N, ot-1) (102)

x; ~N(0,I3%xq) (Isotropic gaussian) (103)

Y= (x;, 0%) + e (104)

where we assume

9T=0 yI=1 ¢ R4 (105)

9T=0 — 9T=1 € §(s,d) (106)



Hence we can derive the following equivalence for the linear parameter:

9IT=0.= 5 BeR? (107)
9= =B+ 6 ,0€S(s,d) (108)
we can rewrite the model as
Y= h)+e (109)
X}Zl = (x;,B+0)+e ' (110)
We can even write the model in a more compact form
Yy, = (x;; 8+ T;0) +¢ (111)
if we assume op—g = o=
Defining the following
Y, =(y,-y) €R" | X,=(x,..,x,)" €eR"” | T, =diag(T,,..,T,) € R (112)
e=(g,6,)" €R" (113)
we can write the model in matrix form:
Y, =X,8+T,X,0+c¢ (114)
2.2.2 Data
Assuming:
{v,x. T}, ~iid Py €P={Pgo,l (5.0)€0 | pelo,1]} (115)
with parameter space
©:=S(ds) © {BeR% Bl <1} (116)
we define the random sample as:
Do = (v, %0 ) (9, %00 T) ) ~ Payy o= Py (117)
We assume the parameter p to be given and we write the probability mass function of T, as follow
fo(T) =p"(L=p)' " (118)
——

=:q

2.3 Minimax to M-ary Hypotheses Testing

Assuming the following paramter space ©
By := BR[| - [l2) = {8 e R% ||Bll2 <1} (119)
0:= S(dk) © B (120)

and considering the following family of distribution

(Ps.6)) (5.0)co (121)

on a measurable space (D, A).
We observe the data Dy, € D distributed as Dy ~ P g+ g)co-
Given the data the goal is to recover supp(6*) which correspond to recover

supp(9E=0 — =LY (see 106 ) (122)

Hence we take the 0-1 loss as error metric and we define any procedure or algorithm recovering the problem as the following
measurable map S : D — supp(S(k, d))
Hence in a minimax risk framework we want to lower bound:

A inf sup P(s.0){S(Dn) # supp(0)} (123)
S:D—supp(S(k,d)) (8,0)e©

We notice similiarities to the problem describe in 1.3.3. The parameter space is different, but as describe in the next section,
the discretization is strongly inspired from the discretization in eq. 21.
Note: Remember that we assume the parameter p to be fixed (or given e.g p=1/2)
2.3.1 Discretization of the Parameter Space
we define the following finite dimensional space
oM = {wj = (7,8); je[M]; 0]

?

= Opin¥i € [d); B € Bg} (124)

As for the discretization in eq 21 we define the size of the discretized space as M := (z) in order to have a one to one
correspondence between all possible support set of a k-sparse vector and each element in the discretized space. In other world
defining the set of all possible support for a given k -sparse 6 as

Ty = {T; Tc{l,..,d}; |T|= k;} (125)
we have the following correspondence
I, 2eM (126)

Notice that in ©M we specified the discretization of S(d, k) and it remains to define the discretization of the euclidean unit
ball BY i.e what are ;s are.



2.3.2 Minimax after Discretization

Lemma 2.1 Minimax to M-ary Hypotheses Testing For Our Setup

Given the discretized space ©M in the same spirit as lemma 1.3 we have

_ inf sup P(g0){8(Dw) # supp(f)} > inf Qo, s{SD,) #I} | I~UniM] (127)
S:D—supp(S(k,d))  (B,0)€© S:D—supp(S(k,d))

Proof. Given the discretized space ©M we have

S Ps,0){S(Dn) # supp(6)} > Jmax Py {S(Dn) # supp(67)} (128)
— 1 l._ !
= é{pealgc P, {S ) # S} St = supp(0') (129)
> — Z P, {S(Dy) # S'} (130)
Slel“k

Using the same argumentation as in the proof of lemma 1.3 we have

_inf sup_ P, 0){S(Dn) # supp(6)} >~ inf Qp, a{8D,) #3} | I~ Uni[M] (131)
S:D—supp(S(k,d))  (B,0)€© S:D—supp(S(k,d))

2.4 Fano’s Method

Claim 2.1 Fanno’s Lemma on Lemma 2.1

EX T I(Yn,:”_n, )+10g2

_ inf sup P9 {S(Dn) # supp(6)} > 1 - (132)
$: D supp(S(k,d))  (8,0)€® - log(¢)
Proof. Using Fanno’s lemma 1.1 we have
X inf 77”,]{8 )# I} = (133)
S:D—supp(S(k,d)
~inf  Ex r Qv gx.r {8(Y,.X,T,)#JX,=T,)} (134)
S:D—supp(S(k,d))
 Ex,1,[(Ya,JX,,T,) + log2
%01, (¥n,J1X,,, T,,) +log (135)

logM

©no

Hence we are interested in upper bounding the quantity
Ex,r,1(Y,,3X,,T,) (136)

To upper this quantity we first claim an upper bound on I (Zi’i |x, = x;,T; = T;) using simple information theory
(Important: tight bound because independent of discretization space).

Claim 2.2 An Upper Bound for I(Xi,lgi =z;, T, =1T;)

Given the settings of the problem we have

i€[n]

Proof. Notice that from the section 2.2 we have the following model for the output variable

zi=< @ ,wi>+§i | wJ:[gj]GGM (138)

—1=—=1
=v,(x;, T, )ER2d

Now conditioned on x; = x; and T; = T; we have

(y, 1% =2, T, = T) = y"" = (vi(ws, Th),0”) + ¢ | V(i T7) € X x {0,1} (139)
Hence we notice that
yiT Lyt Vi | yrTE AL yP I Vig | V(e T) € X x {0,1} (140)
We can upper bound the mutual information I(Yy,J|X,,, T, ) as follow

I(hvl|lnaln) :H(le' 7y |_na )_H(Xlaazn‘iaxnyln) (141)
=Y H( (¥lyy Yooy xe L) = Hy,, -y, 14, X, T,) | Chain Rule (142)

i€[n]
< Z H(y,|x;,T;) = H(y,,-..y,|1J,X,,T,) | Conditioning reduces entropy (143)

i€[n]
= Z H(y,|x;, T;) — Z H(y,|J,x;,T;) | Chain Rule and Ind. (144)

i€[n] i€[n]

=> Iy, dx,T,) (145)

i€[n]



©no

Note: the content up to this section constitute the foundation of this work. The methods used up to this point will be
fixed for all the resulting upcoming.

2.5 Fano’s continued with Lemma 2

) using lemma 1.2

Claim 2.3 An upper bound on I(y ,J|x;,

T,

1 Var(zfiTi)
Iy, d]%;, T;) < §{IOgT} (146)

Proof. We recall that J ~ Uni[M] and from eq. 2.1. XfiTi |3 =j ~ N((v(z;,T;),w’), 0?) hence applying lemma 1.2

1
Iy Jx;=2;,T;,=T;) < 5{log var(y’ iTi) Z log var (y7" i1y = j)} (147)
JG[M]
1 var(y*i)
- f{logT} (148)
(149)

Claim 2.4 An upper on Ex 1 I(Yy,J|X,,,T,) to be optimized wrt {f;};c[a

Using claim 2.3 and 2.3 we have the following bound on Ex 1 I(Yn,J|X,,,T,)
Ex, T, var(y, |x;, T;)
Ex,r,I(Yn JX,, T,) < ) log - (150)
i€[n]
and
1 4 4 , , , ,
B,z varly, Dl L) < o + = 3 [A-p)Tr(@ 0 8) +oTr(8 +0) @ (# +69)] (151
€[M]
! to be optimised wrt {87} ear

Proof. Using claim 2.3

I(Yn, J|X,,T,) < ) log——1 5= (152)
— (153)

var(L. x;, T;)

Ex,1,l(Yn J|X,.T,) <Ex, 1, D log—="3 (154)
i€[n]
var(y [x;, T;)
= Y B log 0 (15%)
1€[n]
Eii L, Va’r(zi |§l7 IZ) .
< Z log 2 | Jensen and Concavity (156)
i€[n]
(157)
to further upper bound we have
Ex, x,var(y,(J)[x;, T;) < Ex, 1,E(y,(J)°|x;, T;) (158)
= EgEx, 1, E(y,(3)*[x;, T, J) (159)
1 .
=17 2 Ex mE(y,(9)%x, T, d =) (160)
je[M]
=— Z Er,Ex,ir,E(y,()*x;, T;,d = j) (161)
JG[M]
1 .
=17 2 [fp(L = 0)Ey, 1, E(y,(3)*|x;. T; = 0, = ) (162)
JE[M]
 fp(Ty = 1B By, (1)), T, = 1,3 = j)] (163)
1 . .
=57 2 [Ex By, ()l T = 0.9 = ) + pEx E(y, (%% T, = 0,3 =4)|  (164)
je[M]

Notice that
(Ylx =2, T, = 0, = j) = ((2:,87) + ) Vo € X (165)
= TT(Bj QB ® xl) + 2¢;(z;, 5j> +§? Vo, € X (166)
Y2lx; =20, T, =1, = j) = (2,8 +07) +¢)* Yz € X (167)
=Tr((f7 +67) @ (B + 07)2; @ ;) + 26w, (B +09)) + € Vo, € X (168)
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Hence summarising the last 2 succesion of equation and using the fact that we modelled x, as isotropic gaussian we have

Ex E(y,(d)%x;, T; = 0,d = j) = Tr(p/ @ ') + o (169)
ExE(y,(3)°|x;, T; = 1,3 = j) = Tr((# +67) @ (87 + 7)) + 0 (170)
putting things together
Ey, oz var(y,(3)]x;, T;) < o° + % 3 [(1 —p)Tr (7 @ B7) + pTr((B7 + 07) @ (87 + ev‘))} (171)
JE[M]

© o

2.5.1 Optimization problem
We aim at tigth bounds i.e

()z1-E (172)
= (173)
EI < () (174)

to minimze in order to have tight bounds

Claim 2.5 Convex Programm

The optimization problem from claim 2.4
5 : 1 i giy 4 2P i giy 4 P i gi
{8} jep =arg  min _ —2 S (BB + 35 D (FL0) + 0 D (0.07) (175)
{ﬁj}je[M]eBg M . M . M .
jE[M] je[M] je[M]
(176)
can be rewritten as the mathematical programm P (M, f(B))
B =arg élélj{l/l f(B) = arg mm —Tr{BTB} + pTr{BTO} + pk62,,., (177)
M = {B e RUM, |lcol(B)if <1 Vi e [M]} (178)
where
B:=[Bi,...,Bu] € RZM (179)
O :=[61,...,00] € RZM (180)
Moreover
P(M, f(B)) is a convex programm (181)
Proof.
{(Fhienn =arg min_ — 3" [(1=p)Tr(8 @ §7) + pTr((8 +07) @ (87 +67)) ] (182)
{89} e By M jem
— arg = 3 [ n ) 40 + 0,6 4 )] (183)
{B]}]E[M €Bg jG[M]
=arg  min d* > (BB + 2 Z (B7,09) +M > (07,607) (184)
P henne®s 2 e M jemn jeM]
(185)
We can rewrite the above mathematical program by defining the following matrix
B:= [y, ..., Bu] € RN (186)
O :=[01,...,00] € RM (187)
which yield
B = arg mln —Tr{BTB} + pTr{BT(’)} + pk6? ;.. (188)
M = {B e RM, |lcol(B)ill. <1 Vie [M]} (189)
we notice the following assuming A, B € M and X € [0, 1]
[Acol(A); + (1 — A)col(B);||2 = (Acol(A); + (1 — A)col(B);, Acol(A); 4 (1 — A)col(B);) (190)
= N[leol(A)i[1* + 2A(1 = N [col(A)s|z[lcol(B): 2 + (1 = A)?[lcol(B)il[3 (191)
<A 201 =N+ (1—-N? |CSand ABeM (192)
=1 Vie[M] (193)
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Hence the constraint set M is a convex set.
We can also rewrite the optimization problem by vectorizing the matrices B, O as follow

A

vec(B)=:B=| : | e R™ (194)
M
591 !

vec(O)=:0= | : | eR™ (195)
oM

which yield

A . o1
B—aranélj{lAf(B) = arg min M<B’B>+

2p

~2(B,O) + pk2,;, (196)

We notice that V2f(B) = 0 VB € R*™ <= f is convex over RM

Claim 2.6 A Solution to Optimization Problem of claim 2.5 when Global Optima € M

Assuming
p\/Eemin <1 (197)

the solution of P(M, f(B)) yield

Bi=—pbl Vje[M] (198)

Proof. If the global minimum belongs B = arg min f (B) of the to the constraint region M it yield a solution to the convex
constraint program. By first order charachterization of convexity we have

Vip_pf(B)=0 (199)
o (200)
B =—-pO (201)
& (202)
Bi =—pt’ Vj e [M] (203)
furthermore the optimal belongs to the constraint set in the following setting:
187]l2 < 1 pll67] < 1 (204)
& pVEbin < 1 (205)

© o

under the last constraint, we can now choose the discretization of B to be B and plug it into fano’s bound yielding the
following lemma

Lemma 2.2 Minimax Lower Bound Lower Bound for our Sparse Causal Estimator

Using lemma 2.1 and claims 2.1,2.2,2.3,2.4,2.5 we have the following minimax lower bound

nlog [1 + W] + log2

inf sup P(s.0){S(Da) # supp(6)} > 1 - (206)
S:D—supp(S(k,d))  (B,0)€© 8 0){ - } log(g)
Proof.
1 . , , , , ,
Ex, 1, var(y,(J)x;, T;) < o’ + i Z {(p —1)Tr(B @ B7) +pTr((B +67) @ (B + 9]))}
JEIM]
(207)
1 . ) . .
— 2 . 2 _ J ¥i _ 2 J J
=o°+ i Z [p (1-p)Tr# @67)+p(1l—p)*Tr® 06 )] (208)
jeM]
= 0% + kb, <p2(1 —p)+p(l— ;0)2) (209)
= 0%+ kby,;,p(1 = p) (210)
o (211)
2 —
Ex, 1, 1(Yn,dX,,T,) <> log[l + %ﬁlp)} (212)
i€[n]
k6% . p(1 —
= nlog [1 + W} (213)
& (214)
inf P {S(]D) ) # 0} =>1 nlog[l i . ’Ug(l_p)} *los? (215)
in su n) 7 Su >1-
S:D—ssupp(S(k,d)) (5,0)12@ (5:6) 1200 PP IOgM

©no
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Result 2.1 A lower bound on the data needed to be better than randomness

Using lemma 2.2, in order for any procedure or algorithm to achieve probability of error in the support recovery process
of YI=0 — YT=1 below 1/2 we need at least

n > [% + logZ] » [1 " 1mmp(1 p)} (216)

3 Fano: Continued with upper bounding using convexity argument

3.1 Some Tools

Claim 3.1 Controlling the KL Divergence with Convexity

Given the distributions Q, {P;}je(nm) and - ;g Aj =1 Aj €R,Vj € [M]  we have

D@I Y APy < > AD(Q|P)

JE[M] JE[M]

Proof. Starting with the definition of the KL divergence and defining P := > je[M] A;P; we have

d
D(QI[P) = Eqlog 2 (o17)
= —Eglog % (218)

In the quantity above we would like to pour out the sum i.e ﬂm/?jij). By defining K := (P + Q) we have Q << P << K

which implies by radon Theorem and chain rule that the following is true

dP  dPdK .
10~ JKd0 | Chain Rule (219)
dIP’j dK ) . o
= Z UK 40 | P<<K = P; <<KVj e [M] + Existence of Radon derivative (220)
je[M]
Using Jensen inquality we have

dP dP;
Eg —log— =Eg —1lo Aj——= 221
o —log 5 = Eq —log Z 90 (221)

€[M]

dP;

< ) AEg-— 1ogm (222)
JE[M]
=< Y AD@QIB)) (223)
jelM]

©no

3.2 New upper bound for mutual information /(y_,J|x;, T;)

Lemma 3.1 Upper bound for I(y ,J|x;, T;) using convexity argument

Given the settup described in 2.2 and the claim 3.1 the following upper bound on the mutual information I (Xi’ Jx;, T,)
holds true

I(&,J|XZ = xz»li = Tz) <

—> Tr{[(ﬁ B+ T[(0' - 09) @ (8 — B7) + (B — B) © (6" — %)) + T2(6" — 69)%7] } (224)
Lj€[M]
£

Proof. We can write the mutual information in term of KI divergence as follow

Iy, d|x; = 2;,T; =T;) = Eq, D (Qy 13.x, =2, T =T Qyx,=z:,1,=T,) (225)
1

= M Z D Qy [J=j,x,=z;,T,=T; ||@y|x =x;,T, Ti) (226)

J€E[M]

where
Qy 13=jx,=x..T,=T: = QN ((w:,p7+T107),02) <<V (227)
1
Qyix, =1, =1 = 37 Z QN (21,87 +T109),02) <<V (228)
J€E[M]

(229)
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where v represents the lebesgue measure. Hence by absolute contuity we can replace the gaussian distribution by their
respective Radon derivative i.e their probability density functions

dQN ((z;,81+T:00),02)

0 =:q (230)
dQN z;,8I+T;07),02
72 . B+ ) .729179 (231)
JEM]
from claim 3.1 we have
1
D(allg) < 57 D Dlallg;) (232)
Je[M]
Now we use the closed form for KL divergence of gaussian distributions
Lo |38 - _
D(gullg;) = 5 [log s T 85 8] = 1+ (g, — t1g,) " S5, (g, — p1g,)] (233)
g
1
= 5oz (Ha = Hg;)? (234)
where
pig, = (i, B' + Ti0") (235)
(237)
implying
(g — p1g,) = ] (8" = B + Ti(6" - 6)) (238)
= (239)
(g, — ugj)Q =alcclx; = Tr(x! cc’x;) = Tr(cc zxl) (240)
=Tr{((8' = #)%2 +T(0' — %) @ (8 = B) + T(8' — p) @ (6" — 07) + T2(6" — 09)* ) 2} (241)
Putting things together we have
Iy, J|x; =z, T, =T)) = Z (Qy,13=jx,=2:,1, =7 || Qy|x, =2, T,=T:) (242)
e[M]
< ﬁ Z (9ullg5) (243)
l,je[M]
I#7
_ 1 I _ pj\®2 (pl _ pi I _ ) (Al _ naj I pj
=3 2 I{(B =)+ T -0 e (8 - )+ T(F - ) o0 —0)  (244)
Lje[M]
I#]
+T7(0" — W)@?)afz@} (245)

Result 3.1 Semi - Result: New Bound for Ex 1 /(Yy,J|X,,T,) not Optimized

Ex,r,1(¥Yn,JX,,T,) < (246)

> Tr{(l—p)[(ﬁl—ﬂj)@]+p[(9l—9j)®(ﬂ’—ﬁj)+(ﬂl—ﬁj)®(9l—0]')+(91—9j)®2]} (247)
1,j€[M]
I#£]

To optimize wrt {87} ear

Proof. Recalling BLABLA and the lemma 3.1

Ex, 1, [(Yn,d X, T,) € D Ex v I(ys d|x; = 25, T, = T) (248)
i€[n]
1 T, T
< 202 M2 Z Z Ex, 1, Tr{cc x;x; (249)
i€[n] l,j€[M]
1#
where

e = [(8' = B + [0~ ) © (8 — ) + (8~ ) @ (6 — )] + T — 09)] (250)
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Decomposing the expectation yield

EK;, T, Ir { CCTXZ'XZT } = ]Eli ]Eii T, Tr { ccTZiZlT } (25 1)
= B, Tr{ec’ Bx x7”} (252)
=Eg Tr{ic"} (253)

:TT{(l =) [(B' = 8] +p[(0' —0)) @ (B' = B7) + (B' — p) @ (0" = 67) + (¢' —9j)®2]} (254)

— (255)

Ex, 1, I(¥Yn,JX,,T,) < ﬁlng > > TT{(l —-p)[(B' = B)®*]+ (256)
i€[n] l,jli[é\/[}

pl0' =)@ (B =)+ (B = ) @ (0" - 67) + (0" - 9j>®2]} (257)

- E Tr{(l—m[wl—ﬁj)m]+p[<91—eﬂ‘>®<ﬁl—ﬂj>+<ﬁl—ﬁj>®<9l—eﬂ‘>+<9l—ef‘>®2}} (258)
l,j€[M]
l#j

To optimize wrt {9} ;c(a

© o

3.3 Interpretation

Result 3.2 Simple Case: Growth in Term of 6,,,, k, d,n, o>

Given the Result 3.1 with p =1 and 5; =0 Vj € [M] which corresponds to the setting in chapter 1 we obtain the
following order

nk62,.. 1
Ezn7ﬂn1(ﬁ7i|xnaln) € o( o2 (1 - d))) (259)

(i

Proof. Using result 3.1 and p=1and 5; =0 Vj € [M] and recalling M =:= (g) we have

n ! j\®2
Ex 1, 1(Yn,JIX,,T,) < BYYEl E Tr{(0' —6")%%} (260)
lje[M]
I#j
nk62,. M(M — 1)
= o (261)

©no
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