
PVK: Numerical Methods for CSE HS23 ETHZ
D-MATH: Seminar for Applied Mathematics

Mael Macuglia maelm@ethz.ch

DISCLAIMER:

The main script for Numerical Methods for CSE includes all the necessary content for the exam and is given during the
exam. Therefore, it should be studied carefully! Knowing where to look during the exam is a significant advantage.

The PVK script should be studied in advance of the PVK. The aim is to provide a condensed version of chapters 2-3 from
the main script, as well as some important tools from linear algebra, which are the building blocks for this course. The
remaining content will be covered during the first three days of the PVK. On the last day, we will solve some old exam
exercises.

The condensed content in this script will also be very useful for future bachelor courses like Introduction to Machine Learning,
NPDE, but also for advanced courses during the master’s, such as Optimization for Data Science or Computational Statistics.

Contents
1 Linear Algebra Review 2

1.1 Vector Spaces . 2
1.2 Some Matrix Properties/Definitions . 2
1.3 Eigenvalues and Eigenvectors . 4
1.4 Similarity Transformations . 4
1.5 Singular Value Decomposition . 5
1.6 Innerproduct, Norms and Metric Spaces . 6
1.7 Matrix Norm . 7

2 Direct Methods for Linear Systems of Equations 9
2.1 Gaussian Elimination Methods and LU Factorization . 9
2.2 Direct Solvers in Eigen . 10
2.3 Exploiting Structure when Solving LSE . 10
2.4 Not Discussed . 10

3 Direct Methods for Linear Least Squares 11
3.1 Least Squares Definition and Setup . 11
3.2 Geometric Interpretation of Least Squares . 11
3.3 Normal Equation . 12

3.3.1 Solving the N.EQ . 13
3.4 Orthogonal Transformation for Solving Least Squares Problems . 13

3.4.1 QR decomposition . 13
3.4.2 Computation of QR decomposition . 13
3.4.3 Eigen: QR Decomposition for Solving LS Systems . 14

3.5 Moore-Penrose Pseudoinverse . 14
3.6 Not Discussed in This Script . 15

4 SVD Based Methods for Least Square Problems 15
4.1 SVD for Solving General Least Squares Problems . 15
4.2 SVD in Eigen . 16

1

1 Linear Algebra Review
Useful lecture notes (also for NumPDE)

• lecture note

1.1 Vector Spaces

Definition 1.1 Vector Space

A Vector Space over the numeric field K(K = R,K = C) is a non empty set V , whose elements are called vectors and
in which two operations are defined, called addition and scalar multiplication, that enjoys the following properties:

1. addition is commutative and associative

2. there exists an element 0 ∈ V called the zero vectors (or null vector) such that v + 0 = v ∀v ∈ V

3. 0 · v = 0 and 1 · v = v ∀v ∈ V

4. ∀v ∈ V there exists an opposite element −v such that v + (−v) = 0

5. the following distributive properties hold

∀α ∈ K, ∀v, w ∈ V,α(v + w) = αv + αw

∀α,β ∈ K, ∀v ∈ V, (α+ β)v = αv + βv

6. the folloing associative property hold

∀α,β ∈ K, ∀v ∈ V, (αβ)v = α(βv)

Examples of vector spaces:

• V = Rn (respectively V = Cn): the set of the n-tuples of real (reps. complex) numbers, n ≥ 1

• V = Pn the set of polynomials pn(x) =
󰁓n

k=0 αkx
k with real or complex coefficients αk

• V = Cp([a, b]) the set of real (or complex) valued functions which are continous on [a, b] up to their p− th derivative,
0 ≤ p < ∞

Definition 1.2 Vector Subspace

We say that a nonempty part W of V is a vector subspace of V ↔ W is a vector space over K

Examples

• Pn is a vector subspace of C∞(R) (space of infinite continously differentiablke functions on real line)

• trivial subspace of any vector space: Vsub = {0}

Definition 1.3 Linearly Independent Systems

A system of vectors {v1, . . . , vm} of a vector space V is called linearly independent if

α1v1 + · · ·+ αmvm = 0 =⇒ α1 = · · · = αm = 0

If the last relation does not hold, we call the system linearly dependent

Definition 1.4 Basis of Vector Space

We call basis of V any system of linearly independent generators of V . If {u1, . . . , un} is a basis of V , the expression
v = ν1u1+ · · ·+νnun is called the decomposition of v with respect to the basis and the scalars ν1, . . . νn ∈ K are called
the components of v with respect to the given basis

Note 1.1 Finite vs Infinite Dimensional Vector Space

Let V be a vector space which admits a basis of n-vectors. Then every system of linearly independent vectors of V
has at most n elements and any other basis of V has n elements. The number n is called the dimension of V and
we write dim(V) = n.
If, instead for any n there always exist n linearly independent vectors of V, then the vector space is called infinite
dimensional

1.2 Some Matrix Properties/Definitions

Definition 1.5 Invertible/Regular Matrix

A ∈ Kn×n is invertible/regular/nonsingular ⇔ ∃B ∈ Kn×n s.t AB = BA = I.
B is called inverse of A
A matrix which is not invertible is called singular

Note 1.2

A square matrix is invertible iff its columns are linearly independent

2

https://people.math.ethz.ch/~kowalski/script-la.pdf

Definition 1.6 Transpose Matrix

We call the transpose of a matrix A ∈ Rm×n denoted by AT , that is obtained by exchanging the rows of A with the
columns of A. We list some of the properties below:

(AT)T = A | (A+B)T = AT +BT | (AB)T = BTAT | (AT)−1 = (A−1)T =: A−T

Definition 1.7 Adjoint/ Conjugate transpose

Let A ∈ Cm×n; the matrix B = AH ∈ Cn×m is called the conjugate transpose of A if bij = aji (complex conjugate
of aij). Some properties

(AH)H = A | (A+B)H = AH +BH | (AB)H = BHAH | (AH)−1 = (A−1)H =: A−H

Definition 1.8 Orthogonal and Unitary Matrix

A matrix A ∈ R×n is called Orthogonal if AAT = ATA = I, that is A−1 = AT

A matrix A ∈ Cm×n is called Unitary if AAH = AHA = I. A unitary matrix is then A−1 = AH

Definition 1.9 Symmetric and Hermitian/Self-Adjoint Matrix

A matrix A ∈ Rm×n is called Symmetric if A = AT , while it is called Antisymetric if A = −AT

A matrix A ∈ Cm×n is called Hermitian or self-adjoint if AT = A that is if A = AH

Definition 1.10 Range and Kernel of a Matrix

Given a matrix A ∈ Km×n the image space or. range of A is the subspace of Km spanned by the columns of A i.e

R(A) := {x ∈ Kn : Ax}

The Kernel or Null Space of A is defined as the subspace

Ker(A) = {x ∈ Kn : Ax = 0}

Definition 1.11 Rank of a Matrix

The rank of a matrix A ∈ Km×n, denoted by rank(A), is the maximum number of linearly independent rows/columns
of A. Equivalently we have

rank(A) = Dim(R(A))

Definition 1.12 Normal Matrix

Let A ∈ Kn×n. We say A is normal iff AHA = AAH

Lemma 1.1 Range and Kernel Relations between Hermitian/Transpose Matrices (without proof)

For any matrix A ∈ Km,n holds

• N (A) = R(AH)⊥

• N (A)⊥ = R(AH)

Note 1.3 Some Equivalent Properties of Regular Matrices

Let A ∈ Kn×n then the following holds

A is nonsingular ⇔
det(A) ∕= 0 ⇔
Ker(A) = {0} ⇔
rank(A) = n ⇔
A has linearly independent rows and columns.

3

1.3 Eigenvalues and Eigenvectors

Definition 1.13 Eigenvalues/Eigenvectors and some Nomenclature

Let A ∈ Kn×n :

• λ ∈ C is called eigenvalue of A ⇔ det(A− λI = 0)󰁿 󰁾󰁽 󰂀
=:p(λ)

⇔ ∃x ∈ Kn s.t Ax = λx

• p(λ) is called characteristic polynomial

• Given an eigenvalue λ we call x righteigenvector and y lefteigenvector of A

Ax = λx

yHA = λyH

• The set of eigenvalues is called Spectrum of A

σ(A) := {λ ∈ C : λ Eigenvalue ofA}

• The maximum module of the eigenvalues of A is called spectral radius of A

ρ(A) := max
λ∈σ(A)

|λ|

• The set of vectors associated with eigenvalue λ is called Eigenspace of λ denoted Eigλ. and it corresponds by
definition to

ker(A− λI)

• The dimension of Eigλ is called geometric multiplicity

dim[ker(A− λI)] = n− rank(A− λI)

• The algebraic multiplicity of λ is the multiplicity of λ as a root of the charachteristic polynomial.

Note 1.4 Some Properties/Results wihtout Proofs

• det(A) =
󰁔n

i=1 λi and Tr(A) =
󰁓n

i=1 λi (the proof is easy, try it home !) The first result has the following
implication

A is singular ⇔ ∃λ = 0,λ ∈ σ(A)

• we notice the following

det(AT − λI) = det((A− λI)T) = det(A− λI) =⇒ σ(AT) = σ(A)

• Given an eignvector x we can determine the corresponding eigenvalue with the Rayleigh quotient

λ =
xHAx

xHx

1.4 Similarity Transformations

Definition 1.14 Similar Matrix

Let A,B ∈ Kn×n. We say that A and B are similar if there exists an invertible matrix P ∈ Kn×n such that

B = P−1AP

The linear map A → P−1AP is called a similarity transformation
Remark: Similar matrices share have same Eigen spectrum (easy to show)

Note 1.5 Property: Schur Decomposition

Given A ∈ Kn×n there exists U unitary such that

U−1AU = UHAU =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

λ1 b12 b13 · · · b1n
0 λ2 b23 · · · b2n
0 0 λ3 · · · b3n
...

...
...

. . .
...

0 0 0 · · · λn

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
= T

Remark: the matrices U and T are not unique.

4

Lemma 1.2 Results from Schur Decomposition (without proofs)

• Every Hermitian (symetric) matrix is unitarly similar to a diagonal real matrix (every Schur decompostion
of A is diagonal).

U−1AU = UHAU = D = diag(λ1, . . . ,λn) ⇔ AU = UD ⇔ Aui = λiui i ∈ [n]

Hence the columns vector of U are the Eigenvectors of A. Moreover as the matrix U is unitary, the span of its
columns generate the whole space Kn

• A matrix A ∈ Kn×n is normal iff it is unitarly similar to a diagonal matrix D. as a consequence, a normal
matrix A admits the following spectral decomposition

A = UDUH =
󰁛

i∈[n]

λiuiu
H
i

1.5 Singular Value Decomposition

Theorem 1.1 Singular Value Decomposition (without proof)

For any A ∈ Km×n there are unitary / Orhtogonal matrices U ∈ Km×m , V ∈ Kn×n and a diagonal matrix
Σ = diag(σ1, . . . ,σp) ∈ Rm×n with p := min{m,n} and σ1 ≥ · · · ≥ σp such that

A = UΣV H

The last decompostion is called Singular Value Decomposition of the matrix A, with singular values =
{σ1, . . . ,σp}

Note 1.6 Economical SVD

drop the bottom zero rows of Σ yield the so called "economical" SVD

m ≥ n : A = UΣV H , U ∈ Km,n V ∈ Kn,n , UHU = In , V Unitary

m < n : A = UΣV H , U ∈ Km,m V ∈ Kn,m , U Unitary , V V H = Im

Lemma 1.3 Uniqueness of SVD

The matrix U and V from SVD are not unique.
The singular values are unique.
Proof:
Assume two decomposition for a matrix A ∈ Rm,n i.e

A = U1Σ1V
T
1 = U2Σ2V

T
2 =⇒ U1Σ1Σ

T
1 U

T
1 = AAT = U2Σ2Σ

T
2 U

T
2

hence by noticing that Σ1Σ
T
1 and Σ2Σ

T
2 are similar, both matrices shares the same eigenvalues which agrees with

there. □

Lemma 1.4 Relation Eigenvalue SVD

Note

σi(A) =
󰁴
λi(AHA) , i ∈ [p]

Proof: recall full SVD U and V Unitary hence

AHA = V ΣHΣV H =⇒ λi(A
HA) = λi(Σ

HΣ) = (σi(A))2

Lemma 1.5 SVD and rank of matrix (no proof)

Let r : 1 ≤ r ≤ p := min{m,n}. If the singular values of A satisfy

σ1 ≥ · · · ≥ σr ≥ σr+1 = . . .σp = 0

then the following holds

• Rank(A) = r

• N (A) = Span
󰀋
(V):,r+1, . . . , (V):,p

󰀌

• R(A) = Span
󰀋
(U):,1, . . . , (U)

󰀌

Lemma 1.6 Rank of Matrix

If A ∈ Rm,n has rank r ≤ min{m,n} then there exist X ∈ Rm,r and Y ∈ Rn,r such that A = XY T

Proof: By SVD theorem A = UΣV T , choose

X := (U):,1:r(Σ)1:r,1:r

Y := (V):,1:r

5

Theorem 1.2 Best Low Rank Approximation (without proof)

Let A = UΣV H be the SVD of A ∈ Km,n then for 1 ≤ k ≤ Rank(A) set

Ak := UkΣkV
H
k =

󰁛

l∈[k]

σl(U):,l(V)H:,l with

󰀻
󰁁󰀿

󰁁󰀽

Uk := [(U):,1, . . . , (U):,k] ∈ Km,k

Vk := [(V):,1, . . . , (V):,k] ∈ Kn,k

Σk := diag(σ1, . . . ,σk) ∈ Kk,k

Then

󰀂A−Ak󰀂F ≤ 󰀂A− F󰀂F ∀F ∈ Rk(m,n) := {F ∈ Km,n : rank(A) ≤ k}

that is the matrix Ak is the best rank-k approximation of the matrix A

1.6 Innerproduct, Norms and Metric Spaces
Think: aim at quantifying differences between objects in vector spaces .

Definition 1.15 Inner Product Space

An inner product space is a vector space V over the Field F toegether with an inner product, that is a map

〈·, ·〉 : V × V → F

having the following properties

• Hermitian: 〈y, x〉 = 〈x, y〉

• Linearity : 〈γx+ λz, y〉 = γ〈x, y〉+ λ〈z, y〉

• Positive Definite: 〈x, x〉 > 0, ∀x ∕= 0 and 〈x, x〉 = 0 ⇔ x = 0

Examples of valid inner product spaces:

• (Rn, 〈x, y〉) := xT y Euclidean inner product

• (Rn, 〈x, y〉) := xTAy for A spd matrix

• (Rm,n, 〈A,B〉) := Tr{ATB}

• Let X and Y be random variables: then the expected value is a inner product 〈X,Y 〉 = EXY

• (L2(R), 〈f, g〉 :=
󰁕
R f(t)g(t)dt)

Definition 1.16 Normed Space

A normed space is a vector space V over a field F together with a norm, that is a map

󰀂 · 󰀂 : F → R+

satifying

• 󰀂v󰀂 ≥ 0 ∀v ∈ V and 󰀂v󰀂 = 0 ⇔ v = 0

• Homogeneity: 󰀂αv󰀂 = |α|󰀂v󰀂 ∀α ∈ F ∀v ∈ V where |α| is the absolute value if F = R or the module if F = C

• Triangular Inequality: 󰀂v + w󰀂 ≤ 󰀂v󰀂+ 󰀂w󰀂 ∀v, w ∈ V

Examples of valid normed vector spaces:

• (Rn, 󰀂 · 󰀂1)

• (Rn, 󰀂 · 󰀂2)

• (L2(R), 󰀂 · 󰀂1)

Definition 1.17 Metric Space

A metric is a pair (X , ρ) where X is a set and ρ is a so called metric, that is a mapping

ρ : X × X → R

satisfying ∀x, y, z ∈ X

• ρ(x, x) = 0 (distance to itself)

• Positivity: x ∕= y =⇒ ρ(x, y) > 0

• Symmetry: ρ(x, y) = ρ(y, x)

• Triangle Inequality: ρ(x, z) ≤ ρ(x, y) + ρ(y, z)

Examples:

• (R, ρ(x, y) := |y − x|)

6

• (R+, ρ(x, y) := ln(y/x))

• (Rm,n, ρ(X,Y) := rank(X − Y))

Note 1.7

• From a normed vector space (V, 󰀂 · 󰀂) we can define a valid distance metric as ρ(x, y) := 󰀂x− y󰀂

• From an inner product space (V, 〈·, ·〉) we can define a valid "associated" norm 󰀂 · 󰀂 as

󰀂x󰀂 =
󰁳
〈x, x〉

which in turn gives rise to a distance metric ρ(x, y) := 󰀂x− y󰀂

• inner product space =⇒ norm space =⇒ metric space

Note 1.8 p-norm

A p -norm or Holder norm is defined as

󰀂x󰀂p = (
󰁛

i∈[n]

|xi|p)
1
p

Lemma 1.7 Cauchy-Schwartz

Given x, y in an inner product space (V, 〈·, ·〉) the Cauchy - Bunyakovsk -Schwarz -inequality says

|〈x, y〉|2 ≤ 〈x, x〉 · 〈y, y〉 ⇔

|〈x, y〉| ≤
󰁳
〈x, x〉 ·

󰁳
〈y, y〉

Examples:

• From 2-d Geometry assuming x, y ∈ R2 : 〈x, y〉 = 󰀂u󰀂2󰀂v󰀂2cos(θ) ≤ 󰀂u󰀂2󰀂v󰀂2

• Assume f, g ∈ (L2(Rn), 〈f, g〉 :=
󰁕 n

R
f(x)g(x)dx) then cauchy-schwartz tells us
󰁝

Rn

f(x)g(x)dx ≤
󰁝

Rn

|f(x)|2dx
󰁝

Rn

|g(x)|2dx

Lemma 1.8 Holder’s Inequality (not most general result: for probability measure take the result over
a measurable space)

Assume x, y ∈ Rn then |〈x, y〉| ≤ 󰀂x󰀂p󰀂y󰀂q with 1
p + 1

q = 1

Definition 1.18 Equivalent norm

Two norms 󰀂 · 󰀂p and 󰀂 · 󰀂q on V are equivalent if there exist two positive constants cpq and Cpq such that

cpq󰀂x󰀂q ≤ 󰀂x󰀂p ≤ Cpq󰀂x󰀂q ∀x ∈ V

Hence p-norm with p = 1, 2,∞ are equivalent (easy to show)

Note 1.9 Convergence Finite Dimensional Vector Space

Let 󰀂 · 󰀂 be a norm in a finite dimensional space V. Then

lim
k→∞

xk = x ⇔ lim
k→∞

󰀂x− xk󰀂 = 0

where x ∈ V and {xk} is a sequence in V

1.7 Matrix Norm
Definition 1.19 Matrix Norm

A matrix norm is a mapping 󰀂 · 󰀂 : Rm×n → R such that

• 󰀂A󰀂 ≥ 0 ∀A ∈ Rm×n and 󰀂A󰀂 = 0 ⇔ A = 0

• 󰀂󰀂 = 󰀂alpha|󰀂A󰀂 ∀α ∈ R ∀A ∈ Rm×n

• 󰀂A+B󰀂 ≤ 󰀂A󰀂+ 󰀂B󰀂 ∀A,B ∈ Rm×n

Definition 1.20 Consistentency with vector norm

We say that a matrix norm 󰀂 · 󰀂 is consistent with a vector norm 󰀂 · 󰀂 if

󰀂Ax󰀂 ≤ 󰀂A󰀂󰀂x󰀂 ∀x ∈ Rn

7

Definition 1.21 Sub-multiplicative

We say that a matrix norm 󰀂 · 󰀂 is sub- multiplicative if ∀A ∈ Rm×n ∀B ∈ Rm×q

󰀂AB󰀂 ≤ 󰀂A󰀂󰀂B󰀂

CAREFUL: this property is not fullfied by every matrix norm

Note 1.10 Forbenius Norm

The Forbenius norm defined as follow

󰀂A󰀂F =
󰁳
〈A,A〉 =󰁿󰁾󰁽󰂀

InnerProd.

󰁴
Tr(AAH) =󰁿󰁾󰁽󰂀

SV D

√
TrV Σ2V H =

√
TrΣ2 =

󰁶󰁛

i∈[r]

σ2
i

where r = Rank(A)

Definition 1.22 Matrix Norm Associated with Two Normed Spaces

Given vector norms 󰀂 · 󰀂x on Kn and 󰀂 · 󰀂y on Km the associated mapping

󰀂A󰀂 = sup
x ∕=0

󰀂Ax󰀂y
󰀂x󰀂x

is a valid matrix norm, where A ∈ Km,n

Definition 1.23 Induced p-Matrix-Norm

Let 󰀂 · 󰀂p be a p-norm on Kn. The function

󰀂A󰀂p = sup
x ∕=0

󰀂Ax󰀂p
󰀂x󰀂p

is a valid matrix norm, where A ∈ Kn,n

Note 1.11 Spectral Norm and Nuclear Norm

Two import matrix norms are:

• p=2 matrix norm is called spectral or operator norm

󰀂A󰀂2 = sup
x ∕=0

󰀂Ax󰀂2
󰀂x󰀂2

=󰁿󰁾󰁽󰂀
proof omitted

σ(A)1

• The nuclear norm defined as

󰀂A󰀂∗ =
󰁛

i∈[r]

σ(A)i

8

2 Direct Methods for Linear Systems of Equations

Definition 2.1 Square LSE

Given a square matrix A ∈ Kn,n and a vector b ∈ Kn find x ∈ Kn such that

Ax = b

Existence of a solution is guaranteed iff A ∈ Kn,n
∗ := {A ∈ Kn,n : A Regular see 1.3}, where the solution takes the

form

x = A−1b

Let denote the data space X := Kn,n
∗ × Kn and the result space Y := Kn we define the mapping F from data to

output space as

F :

󰀝
X → Y
(A, b) → A−1b

2.1 Gaussian Elimination Methods and LU Factorization
The Gaussian elimination method aims at reducing the system Ax=b to an equivalent system (that is, having the same
solution) of the form Ux=b, where U is an upper triangular matrix and b is an updated right side vector. We recall a useful
lemma

Lemma 2.1 Group of regular diagonal/triangular matrices

A,B =

󰀻
󰀿

󰀽

diagonal
upper triangular
lower triangular

=⇒ AB and A−1 =

󰀻
󰀿

󰀽

diagonal
upper triangular
lower triangular

Definition 2.2 Permutation Matrix

An n-permutation n ∈ N is a bijective mapping π : {1, . . . , n} → {1, . . . , n}. The corresponding permutation
matrix Pπ ∈ Kn,n is defined by

(Pπ)ij =

󰀝
1 if j = π(j)
0 else

• PT = P−1 i.e permutation matrices are Orthogonal/ Unitary

• left-multiplication PπA effects π permutation of rows

• right-multiplication APπ effects π permutation of columns

Note 2.1 Gaussian Elimination as Row Manipulation

Using permutation and scaling matrices to manipulate the rows of A we can derive (not rigorous) the following gaussian
elimination

Ax = b ⇔
L1Ax = L1b ⇔

... ⇔
Ln−1 . . . L1A󰁿 󰁾󰁽 󰂀

:=U

x = Ln−1 . . . L1b󰁿 󰁾󰁽 󰂀
b̃

⇔

Ux = b̃

where L1, . . . , Ln−1 are lower triangluar matrices. Notice that

L1 · · ·Ln−1A =: L−1A = U ⇔ A = LU

where L is lower triangular and U is upper triangular. It can be shown that the so called LU factorisation is algebraically
equivalent to gaussian elimination.

Definition 2.3 LU-decomposition/factorization

Given a square matrix A ∈ Kn,n, an upper triangular matrix U ∈ Kn,n and a normalized lower triangular
matrix L ∈ Kn,n form an LU factorisation of A if

A = LU

Theorem 2.1 Existence and Uniqueness (without proofs)

The LU-decompostion of A ∈ Kn,n exists if all submatrices (A)1:k,1:k 1 ≤ k ≤ n are regular Moreover the LU
factorisation is unique

9

Note 2.2 Solving LSE with LU Factorisation

• Step 1: Get Decompositon: A = LU cost: O(n3)

• Step 2: forward elimination : Solve Lb̃ = b for b̃ Cost: O(n2)

• Step 3: backward elimination: Solve for x Ux = b̃ for x Cost: O(n2)

Total Cost: Settup phase O(n3) + Elimination Phase O(n2)

2.2 Direct Solvers in Eigen
Given A ∈ Kn,n

∗ and a l right handside vectors as columns of a matrix B = [b1, . . . , bl] ∈ Kn,l find

X = A−1B = [A−1b1, . . . , A
−1bl] Costs: O(n3 + n2l)

1 Eigen :: Solvertype <Eigen ::MatrixXd > solver(A);
2 Eigen :: VectorXd x = solver.solve(b);

or in one line

1 Eigen :: VectorXd A.Solvertype (). solve(b);

The SolverType are listed in Eigen Documentation.
Example of a solver type is gaussian elimination with partial pivoting yielding

1 Eigen :: VectorXd A.lu(). solve(b);

We can also extract the matrix U and L as follow

1 auto ludec = A.lu() ;
2 Eigen :: MatrixXd U{ludec.matrixU (). triangularView <Eigen ::upper >() };
3 MatrixXd L {lude.matrixLU (). triangularView <Eigen ::UnitLower >()};

2.3 Exploiting Structure when Solving LSE
• A has Triangular Structure (See Script)

• Decompostion already available and matrix A affected by rank-k modifications i.e

Ã = A+ UV H with rank(UV H) = k

with available solution

X = A−1B

Lemma 2.2 Sherman-Morrison-Woodbury formula

For regular A ∈ Kn,n , and U, V ∈ Kn,k, k ≤ n ∈ N, holds

(A+ UV H)−1 = A−1 −A−1U(I + V HA−1U)−1V HA−1

if I + V HA−1U is regular.

Using last lemma we conclude that we only require to solve

AX̂ = U

in order to compute the modified solution X̃

X̃ = A−1B −A−1U(I + V HA−1U)−1V HA−1B = X −A−1U(I + V HA−1U)−1V HX

which yield an asymptotic complexity O(kn2)

2.4 Not Discussed
• Stabily of gaussian elimination without pivoting for diagonally dominant matrices

• LSE for Sparse matrices. Here check Eigen/Sparse documentation. The LSE deinition is the same, but Eigen will use
the fact that the data matrix A is sparse.

10

3 Direct Methods for Linear Least Squares

3.1 Least Squares Definition and Setup

Note 3.1 Setup for this Chapter

Consider the linear system of equation

x ∈ Rn Ax = b b ∈ Rm A ∈ Rm,n m ≥ n󰁿 󰁾󰁽 󰂀
=:possibly overdetermined

Last chapter tells us

∃x ∈ Rn s.t. Ax = b ⇔ b ∈ R(A) = {Ax, x ∈ Rn} ⊂ Rm

What if b /∈ R(A) ?

When R(A) ∕= Rm we say that the image space R(A) is "a set of measure zero " in Rm, which (not formally) means
that the subspace formed by the columns of A is relatively small compared to the entire space Rm. Hence it is unlikely
that the vector b belongs to R(A). Even in the case where modelling constraints the vector b to be in R(A), almost
all perturbation of b , e.g measurements errors , will destroy b ∈ R(A)

Definition 3.1 Least Squares Solution

For given A ∈ Rm,n, b ∈ Rm the vector x ∈ Rn is a least square solution (LS) of the linear system of equations
Ax = b if

x ∈ arg min
y∈Rn

󰀂Ay − b󰀂22

We write the set of least squares solutions as follow

Lsq(A, b) := {x ∈ Rn : xis least square solution of Ax = b} ⊂ Rn

Lemma 3.1 Existence of LS solution

For any A ∈ Rm,n, b ∈ Rm a least square solution of Ax = b exists.
Proof:

󰁫
F (x) := 󰀂Ax− b󰀂22 ≥ 0󰁿 󰁾󰁽 󰂀

bounded from below

continous
󰁬

and
󰁫
x → ∞ =⇒ F (x) → ∞

󰁬
=⇒ ∃x∗ ∈ RnF (x∗) is minimum

3.2 Geometric Interpretation of Least Squares
The closest (wrt to euclidean norm) vector in a subspace (R(A) ⊂ Rn) to a vector (b ∈ Rm) is the orthogonal projection of
the vector b onto the subspace R(A). We can then decompose the vector b with its projection onto R(A) and the orthogonal
complement i.e

b = bR(A) + bR(A)⊥

the space of least squares solutions is then

lsq(A, b) = {Ax = bR(A) : x ∈ Rn}

11

3.3 Normal Equation
From the geometric intuition in last section we conclude that

b−AxLS ⊥ Span{(A):,1, . . . , (A):,n} ⇔ AT (AxLS − b) = 0

which results in the following theorem

Theorem 3.1 Solving Normal Equation Yield LS Solutions

The vector x ∈ Rn is a least squares solution of the linear system Ax = b, A ∈ Rm,n, b ∈ Rm,
if and only if it solves the following square system called the Normal Equation

ATAx = AT b

Proof:
Hint: Employ inner product notation for enhanced clarity! The objective of presenting this proof is to illustrate that
leveraging clever notation can be transformative.
We want to show 󰀂Ay − b󰀂22 > 󰀂Ax− b󰀂22 for x, y sucht that ∀y ∕= x ∈ Rn , x ∈ {x :∈ Rn : AT (Ax− b) = 0}
the following holds:

󰀂Ay − b󰀂22 − 󰀂Ax− b󰀂22 = 〈Ay − b, Ay − b〉 − 〈Ax− b, Ax− b〉
= 〈Ay,Ay〉 − 2〈Ay, b〉+ 〈b, b〉 − 〈Ax− b, b〉󰁿 󰁾󰁽 󰂀

=0 Normal Eq

+〈Ax, b〉 − 〈b, b〉

= 〈Ay,Ay〉 − 2〈Ay, b〉+ 〈Ax, b〉

plugging the geometric view point of normal equation we have b = r +Ax = b−Ax+Ax we have

〈Ay,Ay〉 − 2〈Ay, b〉+ 〈Ax, b〉 = 〈Ay,Ay〉 − 2〈Ay, (b−Ax) +Ax〉+ 〈Ax, (b−Ax) +Ax〉
= 〈Ay,Ay〉 − 2 〈Ay, (b−Ax)〉󰁿 󰁾󰁽 󰂀

=0

−2〈Ay,Ax〉+ 〈b−Ax,Ax〉󰁿 󰁾󰁽 󰂀
=0

+〈Ax,Ax〉

= 〈Ay −Ax,Ay −Ax〉
= 󰀂Ay −Ax󰀂22 > 0 ∀y ∕= x

□

Note 3.2 Normal Equation from Convexity Argument

Notice that the function F (x) = 󰀂Ax − b󰀂22 is convex (easy to show) and differentiable over a convex set (Rn). If
∇F (x) = 0, then x is a minimizer. Using differention rule for inner product we have

∇F (x)Th = DF (x)h = 〈D(Ax− b)h,Ax− b〉+ 〈Ax− b,D(Ax− b)h〉
= 〈Ah,Ax− b〉+ 〈Ax− b, Ah〉
= 2〈Ax− b, Ah〉
⇔ ∇F (x) = 2AT (Ax− b)

AT (Ax− b) = 0 ⇔ xminimizer

Lemma 3.2 Uniqueness of Least Squares

for m ≥ n the linear system of equation from the normal equation has a unique solution iff N (ATA) = {0} (from
section on linear systems). Notice that

N (ATA) = N (A)

Hence the system Ax = b, A ∈ Rm,n, b ∈ Rn has a unique Least Square solution solving

ATAxLS = AT b

iff

N (ATA) = N (A) = {0} ⇔ Rank(A) = n (Full Rank)

Note 3.3 Rank Defect

In case the rank of the design matrix A ∈ Rm,n,m ≥ n fails to have full rank, it hints at inadequate modelling. In
this case parameters are redundant, because different sets of parameters (i.e LS solution not unique) yield the same
output quantities: the parameters are not "observable".

12

3.3.1 Solving the N.EQ

Note 3.4 Recipe for Soling Normal Equation

Assuming A ∈ Rm,n has full rank, solving the normal equation is consists of the following three steps

1. Compute the regular s.p.d matrix C = ATA ∈ Rn,n

2. Compute the right handside vector c := AT b

3. Solve the s.p.d linear system of equations: Cx = c

Total Asymptotic Costs:

O(mn2 + n3) n → ∞,m → ∞

We point out that for symmetric positive definite matrices, there exists a theorem saying that gaussian elimination is
stable without pivoting. This is taken into account by Eigen when using the Cholesky decomposition by calling the
llt() method.

CODE:: Solve Normal Equation with llt() Method:

1 auto x = (A.transpose ()*A).llt (). solve(A.transpose ()*b);

3.4 Orthogonal Transformation for Solving Least Squares Problems

Note 3.5 What LS squares Systems are "Easy" to solve ?

Consider the full rank linear least squares setup, i.e

A ∈ Rm,n Rank(A) = n b ∈ Rm find x = arg min
y∈Rn

󰀂Ay − b󰀂2

Notice that if A is upper triangular, then the LS squares solution would be "easy" to solve as it can be seen by the
following

If A is not upper triangular, we can obtain at an equivalent least squares system with an upper triangular matrix by
means of orthogonal transformation, i.e assuming a transformation matrix T ∈ {T ∈ Rm,m : T Unitary } such
that TA = Upper triangular then

arg min
x∈Rn

󰀂Ax− b󰀂22 = arg min
x∈Rn

󰀂T (Ax− b)󰀂22 ⇔

󰀂T (Ax− b)󰀂22 = (Ax− b)T TTT󰁿 󰁾󰁽 󰂀
=I

(Ax− b) = 󰀂Ax− b󰀂22

3.4.1 QR decomposition

Theorem 3.2 QR-decomposition

For any matrix A ∈ Rm,n with rank(A) = n there exists

• a unique unitary matrix Q0 ∈ Rm,n and a unique upper triangular matrix R0 ∈ Rn,n with (R0)i,i > 0 i ∈ [n]
such that

A = Q0R0 "economical" QR Decomposition

there also exists

• a unique unitary matrix Q ∈ Rm,m and a unique upper triangular matrix R ∈ Rm,n with (R)i,i > 0 i ∈ [n]
such that

A = QR "full" QR Decomposition

3.4.2 Computation of QR decomposition

To compute the QR decomposition, two methods are proposed:

• Householders Reflections

• Given Rotations

13

both methods rely on successive orthogonal transformations annihilating columns entries in order to form an upper
triangular matrix, i.e

Qn−1Qn−2, . . . , Q1󰁿 󰁾󰁽 󰂀
:=QT

A = R

Recalling that composition of orthogonal matrices of the same size is again orthogonal.

3.4.3 Eigen: QR Decomposition for Solving LS Systems

In Eigen the so called Householder reflexion methods is implemented (together ith other methods see Eigen Documentation).
We point out the asymptotic complexity for QR decomposition is

O(mn2)

Hence for solving a least square solution we require

O(mn2)󰁿 󰁾󰁽 󰂀
QR decomp.

+ O(n2)󰁿 󰁾󰁽 󰂀
back substitution

CODE:: Solve Least Squares with QR Decomposition:

1 auto x = A.householderQr (). solve(b);
2 auto residual = (A*x -b).norm ();

3.5 Moore-Penrose Pseudoinverse
What if non-trivial Kernel of A ∈ Rm,n ?
Idea: Single out one solution from the solution space.

Definition 3.2 Generalized Solution of Linear System of Equations

The generalized solution x+ ∈ Rn of a linear system of equations Ax = b, A ∈ Rm,n, b ∈ Rm, is defined as

x+ := argmin{x ∈ lsq(A, b), 󰀂x󰀂2}

The general solution uniquely identifies the solution with the minimum 2-norm from the solution space.

Geometric intuition:
Assume a solution to the normal equation xLS , then for any y ∈ N (ATA) = N (A) xLS + y is also a solution

AT (A(xLS + y)− b) = 0 ⇔ ATAx+ATAy󰁿 󰁾󰁽 󰂀
=0

−AT b = 0

hence the space of solutions lsq(A, b) is an affine subspace parallel to N (A). Notice that the zero element belongs to N (A),
hence the LS solution with minimal 2-norm, i.e the generalized solution is the closest to the zero vector (see picture below)

Also notice that the generalised solution belong to the orthogonal complement of the null space N (A) i.e

xLS ∈ N (A)⊥ = {x ∈ Rn : 〈x, y〉 = 0 ∀y ∈ N (A)}

The last equation is supported by the picture below:

14

Hence given a basis {v1, . . . , vk} ⊂ Rn of N (A)⊥, k := dimN (A)⊥ = n− dimN (A) we can find y ∈ Rk such that

x+ = V y , V := [v1, . . . , vk] ∈ Rn,k

Hence we can rewrite our linear system for a generalised solution as follow

Ax+ = b ⇔ AV y = b

N.EQ V TATAV󰁿 󰁾󰁽 󰂀
k×k

y = V TAT b ⇔

y = (V TATAV)−1V TAT b ⇔
x+ = V y = V (V TATAV)−1V TAT b =: A+b

Note that by construction the k by k matrix V TATAV has a trivial nullspace meaning it is regular. Recalling

N (V TATAV) = N (AV) = {x ∈ Rk : AV x = 0}

we see with the help of picture above (3.5) that V x ∈ N (A)⊥ hence the only vector z ∈ N (A)perp yielding Az = 0 is the
zero vector z = 0.

Theorem 3.3 Formula for Generalised Solution

Given A ∈ Rm,n, b ∈ Rm, the generalised solution x+ of the linear system of equation Ax = b is given by

x+ = V (V TATAV)−1V TAT b =: A+b

where A+ is called the pseudo inverse of the matrix A

3.6 Not Discussed in This Script
Due to the restricted amount of time, some more advanced subchapters that are also important for succeeding in the exam
could not be covered. Please refer to the script of the main lecture, particularly for the following

• Modifications Techniques for QR-Decomposition

• Householder Reflexion

• Given Rotations

4 SVD Based Methods for Least Square Problems
Review:

• Section 1.5 on SVD

• Section 3.5 on the moore pseudo inverse for generalised least squares solution

4.1 SVD for Solving General Least Squares Problems
Assume the most general setting

Ax = b ∈ Rm with A ∈ Rm,n x ∈ Rn rank(A) = r ≤ min{m,n}

i.e no full rank assumption.

We have the following full SVD decomposition:

A = UΣV =:

󰀗
U1

U2

󰀘 󰀗
Σr 0
0 0

󰀘 󰀗
V T
1

V T
2

󰀘

15

where

U1 ∈ Rm,r , U2 ∈ Rm,m−r

V1 ∈ Rn,r , V2 ∈ Rn,n−r

Σr = diag{σ1, . . . ,σr} ∈ Rr,r

Hence the Least Squares objective read

󰀂Ax− b󰀂2 = 󰀂
󰀗
ΣrV

T
1 x− UT

1 b
UT
2 b

󰀘
󰀂2

hence to a minimizer of the above would be a solution to

arg min
x∈Rn

󰀂ΣrV
T
1 x− UT

1 b󰀂2

Now if r < n we have an underdetermined system i.e no unique solution of the system, i.e we need the generalised least
square solution x+.
We now from 3.5 and from lemma 1.1 that the following holds

V T
1 x+ = Σ−1

r UT
1 b ⇔ x+ ∈ N (V T

1)⊥ =󰁿󰁾󰁽󰂀
1.1

R(V1)

Hence we can write the following

∃y ∈ R(V1) s.t x+ = V1y =⇒
V T
1 x+ = V T

1 V1y = y = Σ−1
r UT

1 b

Last equation implies the following result which yield a more general version of the pseudo-inverse matrix

x+ = V1Σ
−1
r UT

1 b = A+b

Theorem 4.1 Pseudo Inverse and SVD

If matrix A ∈ Rm,n with rank r admits the following SVD

A = UΣV =:

󰀗
U1

U2

󰀘 󰀗
Σr 0
0 0

󰀘 󰀗
V T
1

V T
2

󰀘

then its Moore Pseudo Inverse is given by

A+ = V1Σ
−1
r UT

1 b

Note: The same yield for A ∈ Cm,n

Note: The proof of the theorem is given in the explanations above.

4.2 SVD in Eigen
Note: try to code it yourself !

16

