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1 Classical Linear Model

Model: Let Y := (Y1,...,Yn) ind.
Y=f+ewith EY=ffe FCR"
Linear Model: F := {fi = a + }/_  zi;Bj,a €
R,b € RP}

Goal : find an estimate for the systematic component

Ey=f=X8

copies of Y

1.1 Modelling Effect of Covariates

(i) Continous Covariates: z has non-linear effect
B1f(z) with known f: Linear model — y; = 8o+
B1(xi) where z; := f(2;)— f. z has approximatly
polynomial effect So + 12+ ...+ 82! — x5 = zf
(apply centering) (use partial residuals to check
the effect of modelling)

Categorical Covariates Let the covariate x; €
{1,...,c} then apply Dummy Encoding: z;; =
ﬂ($l = 1), wvees Tje—1 = ]1(3,’071 = 1) where the
category omitted(needed for uniqueness of LS)
is called the reference category

Interactions catcat/catcont: y = Bo + S1x +
B2z + B3xz + € Think: x, z not need to be corre-
lated has interaction has effect on y | Think: 81
effect of having A By = effect of having B 83 =
additional effect of having A and B | Think inter-
action when effect of cat. cov. do not translate.

(ii

=

(iii)

1.2 Parameter Estimation [

(i) Assumptions Homoscedasticity and Uncorre-
lated errors: cov(e) = 0212 — same precision
for all measurements| rank(X) = p.

(ii) RSS :=||Y — X2
(ili) minLS: 8 = min||Y — Xg|? = mingeTe
(iv) LSE: g = (XTX)"1XTy
(v) Prediction EY =Y = X3 = HY = YPX
(vi) Hat Matrix SVD(X) = POVT =— H =
PPT Trace: tr(H) = p | Anti projection: Q =
(1— H) Trace : tr(Q) = n—p | both idempotent
and symmetric
(vii) Residuals é=Y — X = QY = VAX

1.3 Parameter Estimation o
(i) MLE: MLE(o?, 8 = fis)
(biased)
(ii) Unbiased Estimator: E|é||? = (n—p)o? =
62 = —1_||¢||2 (unbiased)
n—p
(iii) Residual Standard Error RSE := 6 =

1 1g)2
m||€||

= UJQVILE = %”gHQ

1.4 Geometric Properties
(i) Normal Eq: r = EY = XpB €
Span(1,z1,...,xp—1) = p-dim Vector Space Min-
imize vector of residuals: X7 (Y — X3) =0

(i) Orthonormal Design: In the regression of
y onto (zo,x1,...,xk) the coefficient of zj is

S <Zp,y> : .
Br = PETRTES where z;, is the residual from

regressing xj onto (zo,..,Tk_1)
ovj € {0,1,....,k—1}
(iii) Interpretation: The multiple regression coeff.

Ty, —
=>zk:vj—

ﬂAk represents the additional contribution of xj

on Y after x; has been adjusted for xg, ..., zr_1
1.5 Analysis of Variance
(i) Sample Variance: $2 = 13" | (V; — ¥)?

(i) Sample Pred. Var.: S}% = %HQ —gl1?

(iii) Variance Decomp. : |ly —gl|? = |ly — 9+ 9 —
P =ly—al*+llg-al* +2<y-9.9-5>
where we note that in case of LS the last scalar
product is =0

(iV) SStot = Ssreg + Ssres
(v) Residual variance is the variance we couldn’t ex-
plain
; . g2 — SSreg _ 18=9l%> _ | _ SSres
(vi) R Coeff: R* = S5 = Ty=glZ = 35,
(vii) Interp.: R? proportion of variance explained by
the model

Model Comparison using R2 only meaningful if
following 3 statements are fulfilled:

1. Every model has the same response y (not trans-
form)

2. Every model has the same dimension of parameter
space (nb of p param.)

3. Every model has an intercept

Note: By LLN the sample variance converges in
probability to the variance as n — oo

1.6 Statistical Properties

(i) EB = B and cov(B) = o2(XTX)~1
A 2

Var(B;) = <Z;’7ZJ>

covariates inflate the variance.

Est. Var. cov(f) = 62(XTX)"162 = nipeTﬁ

— correlation between the

(iv) Estimated Standard Error: (Std.error in R
output) se; = (cév(B))jj = V&T(ﬁj)%
(v) If ¢ = N(0,02I) then Y — N(XB,02)|8 —

N(B,o*(XTX)~1)

Theorem 1: Gauss Markov

Y=XB+e¢ E[]=0 Covle) =%l
Furthermore let ¢ € RP and B the LS esti-
mator. Then CT,@ has minimal variance among
all linear unbiased estimators of ¢T3 — BLUE:
Best Linear Unbiased Estimator.
Assume: e has N(0,02I). Then c73 has min-
imal variance among all unbiased estimator —
UMVU

rank[X] = pﬁsub = 0|H1 : 3(5.sub)i 75 0

1.7 Asymptotic Properties of LSE
Yn = Xnf+€n n := nb of observations Assumptions:

(i) (XI'X,)" ! - 0asn— oo
i) maz;Hij; = mazjz;( XTX) 2T - 0asn —
FRENF] JTj J
S

Under Assumptions:

(i) Bnrs > Blon2,6n2, 1 2 52 (Consistency)

(i) (XTXn)2(8—B) 3 N(0,021)

1.8 Statistical Properties of Residuals

i) Be=0
) cov(é) = o2(I — H)
) Var(é;) = o%(1 — H;;) (Heteroscedasticity)
) cov(éj, é;) # 0 (Correlated)

V) epsilon — N(O, UzQT)
) €
)

Res.Sum.Square : &£ — X2

U? n—p
¢T'¢ Independant of 81 g

2 Hypotheses Testing
2.1 Exact F test

Basics of testing: level a: P(¢p(y,z,80) = 1) < a Def .

P-value: Prob. to get a value as extrem as at least as

extreme as result actually observed during the test,

assuming that Hy is correct

(i) General linear Hypotheses: Hgy : CS =
d,rank(C)=r <k
Assumptions: Gaussians Errors

. spio . _ n—p ASSE
Pivot Statistic : F = — o

) Computation of Pivot: F
d)(6C(X'X)~1C")~H(CB - d)
Reject Hy : F > Frp_p(1 — )
ASSE = SSEy — SSE to compute SSEqg —
constrained Least square

ASSE get smaller the less the error the more
likely to accept Ho

~ FT,nfp

(vii)

2.2 F-test for Specific Problems

(i) Test of significance: Hy : Bj = 0 (given all

other predictors)

(i) Pivot: t; = — 4 =
var(B;)2

(ili) Reject Ho (significance): [t;| > tn—p(1 — §)

(iv) Composite test: Bsup = (B1,-.,6r)T|Ho

(v) Pivot: F = 15T, cov(Bsub)Bsub ~ Fron—p
(vi) Note: cov(Bsyp) are sub element of full model
F(XTx) 1
(vii) Global F-test:
RE|H138; # 0
(viii) Pivot: F = "2 B2
(ix) Under Ho : Bo =¥

&J ||ZjH2 ~tn—p

Ho @ Bfun = 0,Bfuu €

(vii)

(viii)

- Proced.: given {pi}ie{l

Lep -

- Stepi:

2.3 Confidance Regions

B;—8;

Sej

(i) CI Hy: B = dj with Pivot t; =
(if)
(iif)

(1= @)CI = [Bj + —sej * tnp(1 = )]
C EL {ﬁ : %(B - 5)’051}(3)(3 - IB) < Fr,n—p}

(iv) CI for Eyo = po: yo = future observation at
location xq
5 ~ _ 1
(v) (@08 + —tn—p(1 = )5 (x5 (X' X) " 20)2]

(vi) Prediction Interval: we want an interval for
future value yo

~ 1
(268 + —tn—p(1 — §)5(1 + 25 (X' X) " wo) 2]
Note: Pred.interval bigger than Ci for mean

3 Multiple Testing

3.1 Problem Formulation

- Hypotheses: Hp = H(()1> n..N Hém)

- Discovery:

reject Ho (at least accept one alterna-
tive)

False Discovery := T'ypel — Error

P-Value: p := Py, (T(X) > T(z)) € [0,1] for
¢ =L @)¢la.a)

- P-value ~ Uni[0, 1]

Proci)dure {Ho, HA}

m}

- Level: Py, (falsedisc.) =Pp,(p < o) < «

Naive approach: test separately Pg, (p" = 1;3i €
{1,...,m}) =1—(1—a)™ as m grows last eq. goes
to 1l = get false discovery by chance.

3.2 Bonferroni Holms

- Metrics FWER = P(V > 1) with V :=nb false dis-

covery
Procedure BF: Reject H(()i) if p() < =

Thm: Bonferroni controls FWER with level a:
P(V>1)<a

- Procedure BF Holms : given ordered {p(1) < ... <

p™}

‘. Stepl: Reject if p(») < = else accept {Hél)H(()m)}
- Step2:

Reject if p@ < —2_ else accept

m—+1
{H{2)...H{m)}
Reject if p(® <

{Hi)...Him)}

[e]
P ¥ else accept

- Thm: bf Holmes controls FWER at level a and is

UMP for simple Bf procedure



3.3 Permutation Test

- Idea: non parametric test (not knowing about the
dist.)

- (1)Sample Szy = {21, ... Tn, Y1, ., ym}

- (2)Randomly permuteSz, and split into Sy, S'y

- (3)Compute statistic T(Sz, Sy)

- repeat B times (1,2,3): {T<1>, ...,T(B)}

s B 1(TW > T(Se,Sy) )+
Pval = B+1

T(Sz,Sy) := observed statistic
- Decision: Reject if ppq; <

3.4 Benjamini Hochberg

power. Gain in power by expecting (1 — FDR) of the
discoveries to be true.

HoNR
- FDP = g = Hig
- FDR := E[FDP]
- Procedure: Given ordered pval {p(l) <..
- mazy,(pF) < 28y 5 R= {p»), . p(M)}
- Thm: if pval are independant then BH, controls
FDR at level o

< plm}

4 Model Selection

4.1 Model Specification

- Missing Varibles: BM is biased | Var(BM) <
Var(Btrue)

- Irrelevant Varibales: BM is biased | Var(BM) > -
Var(ﬁtrue)

4.2 Metrics

- SMSE: sum of mean squared errors }A’iM from true

value p;
- SMSE(M) = E[|YM —p|?] = [M|o+ 7 (E[YM] -
ui)? = Var + bias?
. TM _ SMSE
p o2

- SPSE: sum of prediction errors; )A/;M pred. of new
variable Yy, 4 = pi + €n+i

L SPSE(M) = Y E[(Yati
SMSE(M)

- SSE: sum of squared errors

- SSE(M) = B[[|Y = YM|1?] =

?;IM)Q} = no2 +

SPSE(M) — 2|M|o?

- Note: for all metrics p;, 02 are unkown — need esti- -
- Uncorrolated Errors:

mates

- Note: Miniminzing one of the above metrics results -
- Normal Ass.

in minimizing all of them

- Approach 1:

- SPSE(M) =

- Cross Validation:

- Solution:
model selection on first and use second for statistical -

- Homo. Errors:

4.3 Model Choice Criteria

Overall Goal:
expected SPSE

Split data into {¢rain,validation}

— M
Model on train and SPSE = E[||Yyai — Yirain |
with validation

- Approach 2: not enough data for appr.1 compute

,BM with all data
Sty — MY2 4 2| M |52 (2 based on

full model)
)
z —n+2|M|

-~ n . gMy2
- Mallow’s CP: TM = ¢, = 2 Wi Y )7
. AIC: AIC = —21(BM,52,,) + 2(]M| + 1) wish to

minimize AIC

- BIC: BIC = —2I(BM,52,,) + log(n)(|M| + 1)
- Idea: Controling FWER is very restrictive, hence low .

Note: BIC stronger penalization for complex model

- Better fit if small
- Adj.

R coef RZ=1— p( — R?)

CVscore = 3.7 ASTD—.S'\EJ_] for
data splitted in r chunk

: 1
- Special case Leave one out: CVscore = = Y —
) oM
S—i,My2 _ 1 x~n Yi—Y;
Yti ) T n Z 1— H”

- big computational cost avoided as one only need to

compute HM once for each M and not one for all CV
chunks

4.4 Model Selection Procedures

- Forward selection
- Backward selection
- Stepwise selection

Best subset selection

4.5 Inference after Model Selection

- After model sel. the data has already been used —-

Statistical Inference rules are broken
Randomly split data into 2 parts, apply

inference (like CI,PLetc...)

5 Model Diagnostic

5.1 Model Assumptions

. Zero mean Errors: (3 biased | test,CI not valid)
- Transformations, included ommited covariates

test and CI

Transformation of response, general linear model
test and CI

General linear model

test and CI only asymp. correct

select covariates that minimize the -

- Stundentized Res: 7; =

- Scale Location Plot :

- Goal:

- Variance Inflation Factor:

- Qtf. var(
- Treshold:

-7y > q(af/2),
. Leverage:

5.2 Residual Plots

Stand. Residuals: r; = &i

VI
€(
a( 74)\/1 H;; ~ o p—1

. d651gn matrlx wth i row X% — ,8( D - 59 and .

B=9

=Yi— z
. ’fuckey Anscombe Plot €; VS y; — check zero
means. Even if residuals not uncorr still good visual -

approx.

- fluctuations — non-linearity | omitted covariate
- Stand Res VS Covariates:
zero line model explained well effects of covariates on -

if rdn spread around
mean
mosc. (if well spreaded around zero line)

5.3 Transformations

Achieve mean function approx linear in the
tranformed scale

- Power Fam:

A#£0

u
W(u, A) = { log(u) A=0

- A€ {-1,0,1/3,1/3,1}
- Scaled Power Fam:

(transforming only covariates)

A A#£0
\II(I’)\):{ lmog(x) A=0

- Choose M\ visually, ie model expression best linear re-

lationship (ex: distr. not scewed ) AND minimizing
the SSE (res sum square)

- Box Cox Procedure

5.4 Collinearity Analysis

- Goal: Check wether covariates have lin dep. (corre-

lation)

VIF]' = R
)| R;j := R coeff of X NX( 7)
210

5.5 Outliers

Stud. Res:
(BF correction )

_, — outlier

"Outlier in x-direction” lev := H;; €

[ 1]

. Inﬂuentlal data if : var(€;) = o2(1 — Hy;) if Hy; — 1

(big) then Hyper plane passes through (z;,y;) — in-
fluential data .

- Rule of Thumb: H;; > 2??
$(—1) _2
- Cook’s Distance: D; HypTyll
1 (=92 H”
p52 1—Hy;

. Euchdean dlst bwt Hyper plane Fully and omitted i -

gt —1)

- Check eq. — plot residuals vs leverage
- If D; > 0.5

v/|ri| VS y; to check Ho- -

- WLS :

- Bwrs = (X' X)Xy =

7 ~ tn—p—1| Test all #; simultaneously -

- var(e;) = Ele?] =
- errors unknown — ’e?

- B)

= . WLS: w; := Z,Al

- cov(f) =

6 General Linear Model

6.1 Weighted Least Square

Gener. Model:

o2w-1

= XB + €|E[e] = Olcov(e) =

W assumed to be Pos. Definite.

- W =PTDP,3BstW = BBT and W1/2W1/2 = w

OLS gener. Model: 3= (X7TX)"1xTy

E[B] = 0but cov(B) = o2(X'X) L X'W-1X(X'X)"!

- (CI and Test no longer valid) and GaussMarkov ass.

brocken cov(e) = 021

- Hence OLS no longer UMVU

W2y = Wi/2XB+ Wl/2e=Y = Xp+¢

(X'WX)"IX'WY

- cov(&) = 021 — GaussMarkov EWLS is UMVU

- REML: % = ;L@Weande=Y — XBwis

- if W = diag(wi,...,wn) then WLS(B) Y —
XBYW(Y — XB) = 327 wi(y; — 2}8)?

- w; X #(6) weights bigger impact on objective when

var is small

- Grouped Data (known Heter.): y = (41, ...,yg)’
hence € = (€1, ...,€g)’
_ 2
- cov(g;) = ‘:TZ
_ 21 _ g 1 1
- cov(e) = oW HW—dmg{E,..‘,%}
- Unknown Heter. solution: transformations

VY, log(y)
Solution 2 Stage LS:

o lin. godel 2

B €5 0 +v; 7zoz+ul

- Note: z; := cov. that affect the errors (usually X)

!
~ Zi()é-‘rl/i

~ 2] — 5 2~ A
~ Ele;] = zjars — 0; = ziaLs

i0Ls

‘White Esti. estimation of cov(g) used for correction
of stand. errors CI and tests for asymptotics

(X'X) 1 X'diag{e?, ..., 2} X (X' X)~



- Link Func:

- Probit Model:
- Latent Variable:

- Note:

7 Robust Regression
8 Generalized Linear Models

8.1 Binary Regression

- y; €{0,1} and y; ~ Ber(m)
Ely;] = P(y; = 1) = m; and var(y;] = m;(1 — ;)
- Response Func: m; = h(n;) € [0,1]
h=1(mi) = g(m;) = ni = i3 -
i . i) — o _ _exp(mi
- Logit Model: log(lfﬂi) =zfem= Toezp(r)
o l(m) =28 7=
yi = 1(z; > 0) (observed)
zi =z} — € — Ely;] = Py = 1) = P(z; > 0) =
P(e; < z;8) = F(2;5)
- if ¢, ~ N(0,0) — F = ® Probit model
- if ¢; ~ logistic -+ F = loglt model

— 2 us
Logistic variance 72/3 - B8 = \/56 —
m(n) = h(z'B) = &(«'B)
- resulting prob. are ~ equal for adjusted model
- Note: to compare B1ogitV5Bprobit — scale: ,6’,7,«017“%

. f o ; P(y;=1) _
Interpretation: log ratio Py =0) =
exp(Bo)exp(x1P1)... (ex: if risk covariate cat- -
egorical then see the effect of risk present
Plyi=1) _

P(y;=0) exp(1Brisk) * ... vs = exp(0Brisk) *

- Grouped Data: {n:|7: n% ST yilwi}, i
{1,..,G} data grouped for identical covariates in G
groups

- y; ~ Ber(m;) = Y y; ~ Bin(n;,m;)

© Pry(nitfi) = Pry (72, 95) = (0, o y5)™
m)m—Z yj

E[yg;] = m; — logit probit model

- var(g;) = 7‘(17:7%)
. Overdispersiz)n:

Zyj(

unobserved Heterogeneity or pos-

itive correlation (ex: when people sample comes from .

same cluster)

persion

- Solution: adjust model with overdispersion parameter -
- Summary:

m(1—m;)

var(g) = 6™

8.2 Max. Likelyhood Estimation

- Score Func:
- M Est:

s5(y) = 45log(ps(y))
sp(w)l5 =

- Observed Fisher Info: H(B) = dd—ﬁ (B)

- Fisher Information: F(8) = FE[s(8)s(8)'] =.
Bl L s(3)

- Z Estimator: J5R(8) = £ 31 s(y) = sp(V)

- Alg. Newton : g1 = gt + H(BY) tsge(Y)

- Alg. Fisher Scoring: 8! = ' 4+ F(8%)"!sg: (Y)

- Note: sg(Y) =>"7 s5(v:)

- Note: F(3) = nF(f)

- special case: y; ~ Ber(m;) = sg(Y) = X' (Y —7) —

F(B) = X3 miwimi(1 —mi) = X'VX

. Asymp Theory :
. éov(B) =
- (F(B))ii = var(B;) = se2 standard error for ;

- Testing: Likelyhood ratio test lr = 2(1(B) — (5)) ~

- Overdispersion estimation: ¢ =

© Y € {07 1,2,..

8.3 Statistical Inference

Bure 3 N(B, F~1(B))

F1(B)

X2

-H():ﬁl:O—),/B:
- Hpa:B1#0—= 8
- General Hyp:

Wald Statitic w = (CF —

d)'(CF~Y(B)C")(CB = d) ~a x2 Note C = r x p with
rank(C)=r <p
32
- Sign test: wald stat w = ZJQ = % ~a N(0,1)
- Model fit criteria : Deviance D(%)L: —2l(7) ex- ~

plicitly compare the fit with the perfect fit [(7 = 0)
Like kullback leiber information. The smaller the bet-
ter the fit

. Dev1ance for grouped data: Theoritical MLE known:

= gy; compare num to theoritical: D =

722 (l (ﬂ'z) =1 (yz))
1
n—p
Note: deviance good for comparing nested models

8.4 Count Data Regression

} and fg(y:) = ?}j: exp(—Ai)
Ely;] = Xi = var[y;]

- Log Linear model: log(\;) =n; = 3
_ - Overdispersion: variance higher in data than in model -
- Graphical Overview : LS(8) =

— adjust model var[y;] = ¢\,

_ 1
.¢_T_pD

8.5 Unified Framework for GLM’s
Exp Family: fq(y) = 62p[y0 PO + C(f,w,y)]

o (1= - 0 := natural parameter
- Emprirical Var: s = y'i(nfyi) > M(n__m) — Overdis- -
k2 k2

Canonical Link Function:
d(7)]h(y) — ¢(v) := 0 ¢ canonical link function
Note: under natural paramter: Ey] = d%b(@)
natural paramter modelled as linear

() =0=n=2p

8.6 Classification Metrics

- Goal: use predicted probabilities to classify (predict

) new data: Ynew = 1(pi > t) € {0,1} with t being
the threshold _

~ _ _cap(zncuwl)
1+-exp(znewB)

- if ¢ = 0 no mistake on oservation =1
- Accuracy:

TP+TN

n

- Sensitivity: TPR = W (Recall)
- Specificity: TNR = 73
- FPR =1 — spec = W_ﬂﬂp

- ROC curve: TPR vs FPR goal: reach point (0,1)

and think threshold goes 1 — 0 left to right

- Penalized Regr.

- SVD:

. Xﬁm’dge =
- Interpretation: Rldge estimator shrinks the smaller

- LASSO: pen(B) =

- Comparison of shrinkage:

fy = exple(n)T(y) — - bs
- Ridge: 8;/(1+ X)

- LASSO: sgn(gj)maxﬂgﬂ —\/2}

- Note on LASSO: it performs soft thresholding and

9 Penalized Regression

- Context: If model is well specified the OLS estima-

tor is unbiased but may have high variance — think
subset of coeff that are close to zero bring the same
variance as other coeff into the model. Overall idea is
to trade some bias to reduce variance

- Case: if there is strong collinearity between covariates

— X'X instable

- Case: High dimensional Regression p > n
- Goal:

reduce SPSE by trading bias for some vari-
ance

PLS(B) = |Y — X8| +
Apen(f) N

Ridge: pen(,é’) = H/BH2 — 5ridge = (X/X+I)71X/Y
X = UDV’ with col(U) = Span(X) and
U'U =1 withU € R"*P

p
Z] 1quJrAu LY

principal component which correspond to small sam-
ple variances.

: Cov[ﬁmdge] < cov[BoLs] BUT biased
- Ridge need covariates and response to be scaled and

centered (centered because no penalty on intercept
and scale because contrain on 3 so 8; must be of the
same scale )

- Amount of shirnkage controlled by A
- choosing A\ — CV minimizing the SPSE and choose

the simplest model

1Bl1 = 1Y = XBII> + A 327 |6

G (B—BYX'X(B -~
B) + €€ — ELLIPSOID (plot contour form and con-
straint on f)

Note: no close form

- LASSO shrink coefficient to zero (more shrinkage for

small coeff but less for big coeff)
Assume X'X = I
orhtogonal design and 3; is OLS estimate

Best subset selection: Bj ]1(\5]\ > V)

is like automatic variable selection as the coefficients
are set to zero.

10 Maths Tricks Tutorials

Sub Differentials :

(i) Convex Subset : A subset X C R* is called a
convex subset iff Vzi,x2 € X, the segment that
link them is contained in X

(i) Convex Function: Let X be a convex subset
and f: X — R a function. Then f is convex iff
Vz1,z2 € X and Vt € [0, 1]

fz1 + (1 —t)x2) < tf(w1) + (1 — 1) f(z2)

(iii) Subdifferentials : Let f : I — R a real valued
convex function on the open interval I. The sub-
differential of f at zo € I is the set [a,b] where

o tim, L&) = f(z0)
0 x — xo

b tim, 1@ = 10)
0 xr — X

(iv) If f differential at g then a = b —
{f"(z0)}

(v) Proposition: zg € I is a global minimum of f
iff zero is contained in the subdifferential at zg

[a,b] =



