Statistical Modelling

Cheat Sheet \cdot v1.0 \cdot 2021

Mael Macuglia

D-MATH ETH Zürich

Classical Linear Model

Model: Let $\mathcal{Y} := (Y_1, ..., Y_n)$ ind. copies of Y $\mathcal{Y} = f + \epsilon$ with $E\mathcal{Y} = f, f \in \mathcal{F} \subseteq \mathbb{R}^n$

Linear Model: $\mathcal{F} := \{f_i = a + \sum_{j=1}^p x_{ij}\beta_j, a \in a\}$ $\mathbb{R}, b \in \mathbb{R}^p$

Goal: find an estimate for the systematic component $E\mathcal{V} = f = X\beta$

1.1 Modelling Effect of Covariates

- (i) Continous Covariates: z has non-linear effect $\beta_1 f(z)$ with known f: Linear model $\rightarrow y_i = \beta_0 +$ $\beta_1(xi)$ where $x_i := f(z_i) - \bar{f}$. z has approximatly polynomial effect $\beta_0 + \beta_1 z + ... + \beta_l z^l \rightarrow x_{ij} = z_i^j$ (apply centering) (use partial residuals to check the effect of modelling)
- (ii) Categorical Covariates Let the covariate $x_i \in$ $\{1,...,c\}$ then apply Dummy Encoding: $x_{i1} =$ $\mathbb{I}(x_i = 1), ..., x_{ic-1} = \mathbb{I}(x_{c-1} = 1)$ where the category omitted (needed for uniqueness of LS) is called the reference category
- (iii) Interactions catcat/catcont: $y = \beta_0 + \beta_1 x +$ $\beta_2 z + \beta_3 xz + \epsilon$ Think: x, z not need to be correlated has interaction has effect on $y \mid$ Think: β_1 effect of having A β_2 = effect of having B β_3 = additional effect of having A and B | Think interaction when effect of cat. cov. do not translate.

1.2 Parameter Estimation β

- (i) Assumptions Homoscedasticity and Uncorrelated errors: $cov(\epsilon) = \sigma^2 I_{nxn} \rightarrow \text{same precision}$ for all measurements | rank(X) = p.
- (ii) **RSS** := $||Y X\beta||^2$
- (iii) minLS: $\hat{\beta} = min||Y X\beta||^2 = min_{\beta}\epsilon^T\epsilon$
- (iv) **LSE**: $\hat{\beta} = (X^T X)^{-1} X^T Y$
- (v) **Prediction** $\hat{EY} = \hat{Y} = X\hat{\beta} = HY = \mathcal{VPX}$
- (vi) Hat Matrix $SVD(X) = P\Phi V^T \implies H =$ PP^T Trace: $tr(H) = p \mid Anti projection: <math>Q =$ (1-H) Trace: tr(Q) = n-p | both idempotent and symmetric
- (vii) Residuals $\hat{\epsilon} = Y X\hat{\beta} = QY = \mathcal{Y}\mathcal{A}\mathcal{X}$

1.3 Parameter Estimation σ

- (i) MLE: $MLE(\sigma^2, \beta = \hat{\beta_{LS}}) = \hat{\sigma_{MLE}} = \frac{1}{n} \|\hat{\epsilon}\|^2$
- (ii) Unbiased Estimator: $E||\hat{\epsilon}||^2 = (n-p)\sigma^2 \implies$ $\hat{\sigma}^2 = \frac{1}{n-n} ||\hat{\epsilon}||^2$ (unbiased)
- (iii) Residual Standard Error $RSE := \hat{\sigma} =$

1.4 Geometric Properties

(i) Normal Eq: $\mu = EY = X\beta \in$ $\operatorname{Span}(1, x_1, ..., x_{p-1}) = \operatorname{p-dim} \operatorname{Vector} \operatorname{Space} \operatorname{Min-}$ imize vector of residuals: $X^T(Y - X\hat{\beta}) = 0$

- (ii) Orthonormal Design: In the regression of 1.7 Asymptotic Properties of LSE y onto $(x_0, x_1, ..., x_k)$ the coefficient of x_k is $\hat{\beta}_k = \frac{\langle z_k, y \rangle}{\langle z_k, z_k \rangle}$ where z_k is the residual from regressing x_k onto $(x_0,...,x_{k-1}) \implies z_k^T x_i =$ $0 \forall j \in \{0, 1, ..., k - 1\}$
- (iii) **Interpretation**: The multiple regression coeff. $\hat{\beta}_k$ represents the additional contribution of x_k on Y after x_k has been adjusted for $x_0, ..., x_{k-1}$

1.5 Analysis of Variance

- (i) Sample Variance: $S^2 = \frac{1}{n} \sum_{i=1}^n (Y_i \bar{Y})^2$
- (ii) Sample Pred. Var.: $S_{\hat{V}}^2 = \frac{1}{n} ||\hat{y} \bar{y}||^2$
- (iii) Variance Decomp. : $\|y \bar{y}\|^2 = \|y \hat{y} + \hat{y} y\|^2$ $|\bar{y}||^2 = ||y - \hat{y}||^2 + ||\hat{y} - \bar{y}||^2 + 2 < y - \hat{y}, \hat{y} - \bar{y} > 0$ where we note that in case of LS the last scalar product is = 0
- (iv) $SS_{tot} = SS_{reg} + SS_{res}$
- (v) Residual variance is the variance we couldn't ex-
- (vi) **R** Coeff: $R^2 = \frac{SS_{reg}}{SS_{tot}} = \frac{\|\hat{y} \bar{y}\|^2}{\|y \bar{y}\|^2} = 1 \frac{SS_{res}}{SS_{tot}}$
- (vii) Interp.: R^2 proportion of variance explained by the model

Model Comparison using R^2 only meaningful if following 3 statements are fulfilled:

- 1. Every model has the same response u (not transform)
- 2. Every model has the same dimension of parameter space (nb of p param.)
- 3. Every model has an intercept

Note: By LLN the sample variance converges in probability to the variance as $n \to \infty$

1.6 Statistical Properties

- covariates inflate the variance.
- (iii) Est. Var. $c\hat{o}v(\hat{\beta}) = \hat{\sigma}^2(X^TX)^{-1}|\hat{\sigma}^2 = \frac{1}{n-n}\epsilon^T\epsilon$
- (iv) Estimated Standard Error: (Std.error in R output) $se_i = (\hat{cov}(\hat{\beta}))_{ij} = \hat{Var}(\hat{\beta}_i)^{\frac{1}{2}}$
- (v) If $\epsilon \to N(0, \sigma^2 I)$ then $Y \to N(X\beta, \sigma^2)|\hat{\beta} \to$ $N(\beta, \sigma^2(X^TX)^{-1})$

Theorem 1: Gauss Markov

 $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \epsilon \quad \mathbf{E}[\epsilon] = 0 \quad Cov(\epsilon) = \sigma^2 I \quad rank[X] = p \beta_{sub} = 0 | H1 : \exists (\beta_{sub})_i \neq 0$ Furthermore let $\mathbf{c} \in \mathcal{R}^p$ and $\hat{\boldsymbol{\beta}}$ the LS estimates $F = \frac{1}{r} \hat{\beta}_{sub}^T \hat{cov}(\hat{\beta}_{sub}) \hat{\beta}_{sub} \sim F_{r,n-p}$

Furthermore let $\mathbf{c} \in \mathcal{R}^p$ and $\hat{\beta}$ the LS estimator. Then $\mathbf{c}^T \hat{\boldsymbol{\beta}}$ has minimal variance among all linear unbiased estimators of $\mathbf{c}^T \beta \to \text{BLUE}$: Best Linear Unbiased Estimator.

Assume: ϵ has $N(0, \sigma^2 I)$. Then $\mathbf{c}^T \hat{\beta}$ has minimal variance among all unbiased estimator \rightarrow UMVU

 $\mathbf{Y_n} = \mathbf{X_n} \boldsymbol{\beta} + \boldsymbol{\epsilon_n} \ n := \text{nb of observations Assumptions:}$

- (i) $(X_n^TX_n)^{-1}\to 0$ as $n\to\infty$ (ii) $max_jH_{jj}=max_jx_j(X^TX)^{-1}x_j^T\to 0$ as $n\to$

Under Assumptions:

- (i) $\hat{\beta_n}_{LS} \stackrel{p}{\to} \beta | \hat{\sigma_n}^2, \hat{\sigma_n}_{ML}^2 \stackrel{p}{\to} \sigma^2$ (Consistency)
- (ii) $(X_n^T X_n)^{\frac{1}{2}} (\hat{\beta} \beta) \stackrel{D}{\rightarrow} N(0, \sigma^2 I)$

1.8 Statistical Properties of Residuals

- (i) $\mathbf{E}\hat{\epsilon} = 0$
- (ii) $cov(\hat{\epsilon}) = \sigma^2(I H)$
- (iii) $Var(\hat{\epsilon}_i) = \hat{\sigma}^2(1 H_{ii})$ (Heteroscedasticity)
- (iv) $cov(\hat{\epsilon}_i, \hat{\epsilon}_i) \neq 0$ (Correlated)
- (v) $eps\hat{i}lon \rightarrow N(0, \sigma^2 Q)$
- (vi) Res.Sum.Square : $\frac{\hat{\epsilon}^T \hat{\epsilon}}{\sigma^2} \to \mathcal{X}_{n-n}^2$
- (vii) $\hat{\epsilon}^T \hat{\epsilon}$ Independent of $\hat{\beta}_{LS}$

Hypotheses Testing

2.1 Exact F test

Basics of testing: level α : $P(\phi(y, x, \beta_0) = 1) \le \alpha$ Def . False Discovery := TypeI - ErrorP-value: Prob. to get a value as extrem as at least as extreme as result actually observed during the test, assuming that H_0 is correct

- (i) General linear Hypotheses: $H_0 : \mathbf{C}\beta =$ \mathbf{d} , $rank(\mathbf{C}) = r \le k$
- (ii) **Assumptions:** Gaussians Errors
- (iii) **Pivot Statistic**: $F = \frac{n-p}{r} \frac{\Delta SSE}{SSE} \sim F_{r,n-p}$ (iv) Computation of Pivot: $F = \frac{1}{r}(C\hat{\beta} \frac{1}{r})$
- $d)'(\hat{\sigma}C(X'X)^{-1}C')^{-1}(C\hat{\beta}-d)$
- (v) Reject $H_0: F > F_{r,n-p}(1-\alpha)$
- (vi) $\Delta SSE = SSE_0 SSE$ to compute $SSE_0 \rightarrow$ (i) $E\hat{\beta} = \beta$ and $cov(\hat{\beta}) = \sigma^2(X^TX)^{-1}$ (vi) $\Delta SSE = SSE_0 - SSE$ to compute $SSE_0 \rightarrow$ constrained Least square (vii) ΔSSE get smaller the less the error the more
 - likely to accept H_0

2.2 F-test for Specific Problems

- (i) Test of significance: $H_0: \hat{\beta}_i = 0$ (given all other predictors)
- (ii) Pivot: $t_j = \frac{\hat{\beta}_j}{v \hat{a} r (\hat{\beta}_j)^{\frac{1}{2}}} = \frac{\hat{\beta}_j}{\hat{\sigma}} ||z_j||^2 \sim t_{n-p}$
- (iii) Reject H_0 (significance): $|t_i| > t_{n-p}(1-\frac{\alpha}{2})$
- (iv) Composite test: $\beta_{sub} = (\beta_1, ..., \beta_r)^T [H_0]$
- (vi) Note: $\hat{cov}(\hat{\beta_{sub}})$ are sub element of full model $\hat{\sigma}^2(X^TX)^{-1}$
- (vii) Global F-test: $H_0: \beta_{full} = 0, \beta_{full} \in$ $\mathcal{R}^k | H_1 \exists \beta_i \neq 0$
- (viii) Pivot: $F = \frac{n-p}{k} \frac{R^2}{1-R^2}$
- (ix) Under $H_0: \beta_0 = \bar{y}$

2.3 Confidence Regions

- (i) CI $H_0: \beta_j = d_j$ with Pivot $t_j = \frac{\beta_j \beta_j}{se_j}$
- (ii) $(1 \alpha)CI = [\hat{\beta}_i + -se_i * t_{n-p}(1 \frac{\alpha}{2})]$
- (iii) **C El.** $\{\beta : \frac{1}{2}(\hat{\beta} \beta)'c\hat{o}v(\hat{\beta})(\hat{\beta} \beta) < F_{r,n-p}\}$
- (iv) CI for $Ey_0 = \mu_0$: $y_0 = \text{future observation at}$
- (v) $\left[x_0'\hat{\beta} + -t_{n-p}(1-\frac{\alpha}{2})\hat{\sigma}(x_0'(X'X)^{-1}x_0)^{\frac{1}{2}}\right]$
- (vi) Prediction Interval: we want an interval for future value u_0
- (vii) $\left[x_0'\hat{\beta} + -t_{n-p}(1-\frac{\alpha}{2})\hat{\sigma}(1+x_0'(X'X)^{-1}x_0)^{\frac{1}{2}}\right]$
- (viii) Note: Pred.interval bigger than Ci for mean

Multiple Testing

3.1 Problem Formulation

· Hypotheses: $H_0 = H_0^{(1)} \cap ... \cap H_0^{(m)}$

· **Discovery:** reject H_0 (at least accept one alterna-

P-Value: $p := \mathbb{P}_{H_0}(T(X) > T(x)) \in [0,1]$ for $\phi = \mathbb{1}_{(T(x)\notin[q_l,q_r])}$

· P-value $\sim Uni[0,1]$

· Proced.: given $\{p^i\}_{i\in\{1,...m\}} \stackrel{Procedure}{\rightarrow} \{H_0, H_A\}$

· Level: $\mathbb{P}_{H_0}(falsedisc.) = \mathbb{P}_{H_0}(p \leq \alpha) \leq \alpha$

· Naive approach: test separately $\mathbb{P}_{H_0}(\phi^i = 1; \exists i \in$ $\{1, ..., m\} = 1 - (1 - \alpha)^m$ as m grows last eq. goes to $1 \implies \text{get false discovery by chance.}$

3.2 Bonferroni Holms

· Metrics $FWER = \mathbb{P}(V > 1)$ with V := nb false dis-

· Procedure BF: Reject $H_0^{(i)}$ if $p^{(i)} \leq \frac{\alpha}{m}$

• Thm: Bonferroni controls FWER with level α : $\mathbb{P}(V > 1) < \alpha$

· Procedure BF Holms: given ordered $\{p^{(1)} < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... > ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... < ... <$

: Step1: Reject if $p^{(1)} \leq \frac{\alpha}{m}$ else accept $\{H_0^{(1)} \dots H_0^{(m)}\}$

· **Step2:** Reject if $p^{(2)} \le \frac{\alpha}{m+1}$ else accept $\{H_0^{(2)}...H_0^{(m)}\}$

· **Stepi:** Reject if $p^{(i)} \leq \frac{\alpha}{m-i+1}$ else accept $\{H_0^{(i)}...H_0^{(m)}\}$

· Thm: bf Holmes controls FWER at level α and is UMP for simple Bf procedure

3.3 Permutation Test

· Idea: non parametric test (not knowing about the

(1)Sample $S_{xy} = \{x_1, ..., x_n, y_1, ..., y_m\}$

· (2)Randomly permute S_{xy} and split into \tilde{S}_x , \tilde{S}_y

· (3)Compute statistic $T(\tilde{S}_x, \tilde{S}_y)$

· repeat B times (1.2.3): $\{T^{(1)}, ..., T^{(B)}\}$

 $\hat{p}_{val} = \frac{\sum_{l=1}^{B} \mathbb{1}(|T^{(l)}| \ge |T(S_x, S_y)|) + 1}{B+1}$

 $T(S_x, S_y) := \text{observed statistic}$

· Decision: Reject if $\hat{p}_{val} < \alpha$

Benjamini Hochberg

Idea: Controling FWER is very restrictive, hence low power. Gain in power by expecting (1 - FDR) of the . Better fit if small discoveries to be true.

 $\cdot FDP = \frac{V}{|R|} = \frac{|H_0 \cap R|}{|R|}$

FDR := E[FDP]• **Procedure:** Given ordered pval $\{p^{(1)} < ... < p^{(m)}\}$

 $max_k(p^{(k)} \le \frac{\alpha k}{m}) \to R := \{p^{(1)}, ..., p^{(k)}\}$

Thm: if pval are independent then BH_{α} controls FDR at level α

Model Selection

Model Specification

· Missing Varibles: $\widehat{\beta}^M$ is biased $|Var(\widehat{\beta}^M)| \leq .$ Backward selection

• Irrelevant Varibales: $\widehat{\beta}^M$ is biased $|Var(\widehat{\beta}^M)\rangle$ · Best subset selection $Var(\beta_{true})$

4.2 Metrics

SMSE: sum of mean squared errors \widehat{Y}_{i}^{M} from true

 $\cdot SMSE(M) = E[\|\hat{Y}^{M} - \mu\|^{2}] = |M|\sigma^{2} + \sum_{i}^{n} (E[\hat{Y}_{i}^{M}] - \mu\|^{2})$ $\mu_i)^2 = Var + bias^2$

 $\Gamma_n^M = \frac{SMSE}{\sigma^2}$

• **SPSE:** sum of prediction errors; \widehat{Y}_i^M pred. of new variable $Y_{n+i} = \mu_i + \epsilon_{n+i}$

 $\cdot SPSE(M) = \sum_{i}^{n} E[(Y_{n+i} - \widehat{Y}_{i}^{M})^{2}] = n\sigma^{2} +$

· SSE: sum of squared errors

 $SSE(M) = E[||Y - \hat{Y}^M||^2] = SPSE(M) - 2|M|\sigma^2$

Note: Miniminzing one of the above metrics results in minimizing all of them

4.3 Model Choice Criteria

Overall Goal: select covariates that minimize the expected SPSE

· Approach 1: Split data into {train, validation} Model on train and $\widehat{SPSE} = E[\|Y_{val} - \widehat{Y_{train}}^M\|^2]$

Approach 2: not enough data for appr.1 compute

 $\cdot \widehat{SPSE}(M) = \sum_{i}^{n} (y_i - \widehat{Y}_i^M)^2 + 2|M|\widehat{\sigma}^2 (\widehat{\sigma}^2 \text{ based on }$

· Mallow's CP: $\widehat{\Gamma}^M = C_p = \frac{\sum_i^n (y_i - \widehat{Y}_i^M)^2}{\widehat{\Sigma}_i^2} - n + 2|M|$

· AIC: $AIC = -2l(\widehat{\beta}^M, \widehat{\sigma}^2_{ML}) + 2(|M|+1)$ wish to minimize AIC

· BIC: $BIC = -2l(\widehat{\beta}^M, \widehat{\sigma}_{ML}^2) + log(n)(|M| + 1)$

 \cdot Note: BIC stronger penalization for complex model

· Adj. R coef $\bar{R}^2 = 1 - \frac{n-1}{n-n}(1-R^2)$

· Cross Validation: $CV_{score} = \sum_{i}^{r} \widehat{SPSE}_{i}^{-j}$ for data splitted in r chunk

Special case Leave one out: $CV_{score} = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \lambda \in \{-1, 0, 1/3, 1/3, 1\})$

 $\begin{array}{l} \hat{Y}_i^{-i,M})^2 = \frac{1}{n} \sum_i^n \frac{Y_i - \hat{Y}_i^M}{1 - H_{ii}} \\ \cdot \text{ big computational cost avoided as one only need to} \end{array}$ compute H^M once for each M and not one for all CV chunks

4.4 Model Selection Procedures

· Forward selection

· Stepwise selection

4.5 Inference after Model Selection

· After model sel. the data has already been used \Longrightarrow Statistical Inference rules are broken

· Solution: Randomly split data into 2 parts, apply model selection on first and use second for statistical inference (like CI.PI.etc...)

Model Diagnostic

5.1 Model Assumptions

· **Zero mean Errors**: ($\hat{\beta}$ biased | test,CI not valid)

· Transformations, included ommitted covariates

· Homo. Errors: test and CI

· Note: for all metrics μ_i, σ^2 are unkown \rightarrow need esti- · Transformation of response, general linear model

· Uncorrolated Errors: test and CI

· General linear model

· Normal Ass. test and CI only asymp, correct

5.2 Residual Plots

Stand. Residuals: $r_i = \frac{\widehat{\epsilon}_i}{\widehat{\sigma}_{\lambda}/1 - H_{i,i}}$ Stundentized Res: $\tilde{r}_i = \frac{\widehat{\epsilon}_{(i)}}{\widehat{\sigma}^{(-i)}\sqrt{1-H_{ii}}} \sim t_{n-p-1}$

Tuckey Anscombe: Plot $\hat{\epsilon}_i$ VS $\hat{y}_i \rightarrow$ check zero means. Even if residuals not uncorr still good visual \cdot W assumed to be Pos. Definite.

fluctuations \rightarrow non-linearity | omitted covariate Stand Res VS Covariates: if rdn spread around zero line model explained well effects of covariates on \cdot OLS gener. Model: $\hat{\beta} = (X^T X)^{-1} X^T Y$

Scale Location Plot: $\sqrt{|r_i|}$ VS y_i to check Homosc. (if well spreaded around zero line)

5.3 Transformations

Goal: Achieve mean function approx linear in the tranformed scale

Power Fam:

$$\Psi(u,\lambda) = \begin{cases} u^{\lambda} & \lambda \neq 0\\ \log(u) & \lambda = 0 \end{cases}$$

Scaled Power Fam: (transforming only covariates)

$$\Psi(x,\lambda) = \begin{cases} x^{\lambda} & \lambda \neq 0\\ \log(x) & \lambda = 0 \end{cases}$$

· Choose λ visually, ie model expression best linear relationship (ex: distr. not scewed) AND minimizing the SSE (res sum square)

· Box Cox Procedure

5.4 Collinearity Analysis

· Goal: Check wether covariates have lin dep. (corre-

· Variance Inflation Factor: $VIF_j := \frac{1}{1-R_s}$

Qtf. $var(\widehat{\beta}_j)|R_j := R \text{ coeff of } X_j \sim X^{(-j)}$ Treshold: (>10)

5.5 Outliers

Stud. Res: $\tilde{r}_i \sim t_{n-p-1}$ Test all \tilde{r}_i simultaneously · Solution 2 Stage LS: (BF correction)

· $\dot{\tilde{t}}_i > q(\alpha/2)_{t_n-p-1} \rightarrow \text{outlier}$ · **Leverage:** Outlier in x-direction" $lev := H_{ii} \in$

· Influential data if : $var(\hat{\epsilon}_i) = \sigma^2(1 - H_{ii})$ if $H_{ii} \to 1$ (big) then Hyper plane passes through $(x_i, y_i) \rightarrow \text{in-}$ fluential data.

· Rule of Thumb: $H_{ii} > \frac{2p}{r}$

· Cook's Distance: $D_i = \frac{\|\widehat{\mathbf{y}}^{(-i)} - \widehat{\mathbf{y}}\|^2}{p\widehat{\sigma}^2} = .$ WLS: $w_i := \frac{1}{z_i'\widehat{\alpha}_{LS}}$

 $\frac{1}{p\widehat{\sigma}^2}\frac{\widehat{\epsilon}^{(-i)2}}{1-H_{ii}}\frac{H_{ii}}{1-H_{ii}}\frac{H_{ii}}{1-H_{ii}}$ Euclidean dist but Hyper plane Full \widehat{y} and omitted i White Esti. estimation of $cov(\widehat{\beta})$ used for correction

· Check eq. \rightarrow plot residuals vs leverage

· If $D_i > 0.5$

General Linear Model

6.1 Weighted Least Square

design matrix with i row $X^{-i} \to \hat{\beta}^{(-i)} \to \hat{\sigma}^{(-i)}$ and Gener. Model: $Y = X\beta + \epsilon |E[\epsilon] = 0|cov(\epsilon) = 0$

 $W = P^T D P$, $\exists Bs.tW = BB^T$ and $W^{1/2}W^{1/2} = W$

 $E[\hat{\beta}] = 0 \text{ but } cov(\hat{\beta}) = \sigma^2(X'X)^{-1}X'W^{-1}X(X'X)^{-1}$

· (CI and Test no longer valid) and GaussMarkov ass. brocken $cov(\epsilon) = \sigma^2 I$

· Hence OLS no longer UMVU

• WLS: $W^{1/2}Y = W^{1/2}X\beta + W^{1/2}\epsilon = \tilde{Y} = \tilde{X}\beta + \tilde{\epsilon}$

$$\widehat{\beta}_{WLS} = (\widetilde{X}'\widetilde{X})^{-1}\widetilde{X}'\widetilde{Y} = (X'WX)^{-1}X'WY$$

 $\cdot cov(\tilde{\epsilon}) = \sigma^2 I \rightarrow \text{GaussMarkov } \widehat{\beta}_{WLS} \text{ is UMVU}$

· REML: $\hat{\sigma}^2 = \frac{1}{n-n} \hat{\epsilon}' W \hat{\epsilon}$ and $\hat{\epsilon} = Y - X \hat{\beta}_{WLS}$

· if $W = diag(w_1,...,w_n)$ then $WLS(\beta) = (Y - X\beta)'W(Y - X\beta) = \sum_i^n w_i(y_i - x_i'\beta)^2$

· $w_i \propto \frac{1}{var(\epsilon_i)}$ weights bigger impact on objective when

· Grouped Data (known Heter.): $y = (\bar{y}_1, ..., \bar{y}_G)'$ hence $\epsilon = (\bar{\epsilon}_1, ..., \bar{\epsilon}_G)'$

 $\cdot cov(\bar{\epsilon}_i) = \frac{\sigma^2}{n_i}$

 $cov(\epsilon) = \sigma^2 W^{-1} \rightarrow W = diag\{\frac{1}{n_1}, ..., \frac{1}{n_n}\}$

· Unknown Heter. solution: transformations $\sqrt{y}, log(y)$

 $var(\epsilon_i) = E[\epsilon_i^2] = \sigma_i^2 \xrightarrow{lin.model} \epsilon_i^2 = \sigma_i^2 + \nu_i = z_i'\alpha + \nu_i$

Note: $z_i := \text{cov.}$ that affect the errors (usually X)

errors unknown $\rightarrow \hat{\epsilon}_i^2 \approx z_i' \alpha + \nu_i$

 $\widehat{E}[\widehat{\epsilon_i^2}] \approx \widehat{E}[\widehat{\epsilon_i^2}] = z_i' \widehat{\alpha}_{LS} \to \sigma_i^2 \approx z_i' \widehat{\alpha}_{LS}$

of stand, errors CI and tests for asymptotics

 $\widehat{cov}(\widehat{\beta}) = (X'X)^{-1}X'diaq\{\widehat{\epsilon}_1^2,...,\widehat{\epsilon}_n^2\}X(X'X)^{-1}$

Robust Regression

Generalized Linear Models

Binary Regression

```
y_i \in \{0,1\} and y_i \sim Ber(\pi)
E[y_i] = P(y_i = 1) = \pi_i \text{ and } var[y_i] = \pi_i(1 - \pi_i)
• Response Func: \pi_i = h(\eta_i) \in [0,1]
 Link Func: h^{-1}(\pi_i) = g(\pi_i) = \eta_i = x_i'\beta
· Logit Model: log(\frac{\pi_i}{1-\pi_i}) = x_i'\beta \Leftrightarrow \pi_i = \frac{exp(\eta_i)}{1-exp(\eta_i)}
· Probit Model: \Phi^{-1}(\pi) = x'\beta \Leftrightarrow \pi = \Phi(\eta)
 Latent Variable: y_i = \mathbb{1}(z_i \geq 0) (observed)
  Latent Variable: y_i = \mathbb{I}(z_i \geq 0) (observed) z_i = x_i'\beta - \epsilon_i \rightarrow E[y_i] = P(y_i = 1) = P(z_i \geq 0) = \cdot Sign test: wald stat w = z_j^2 = \frac{\widehat{\beta}_j^2}{F^{-1}(\widehat{\beta})_{ii}} \sim_a N(0, 1)
  P(\epsilon_i < x_i'\beta) = F(x_i'\beta)
· if \epsilon_i \sim N(0, \sigma) \rightarrow F = \Phi Probit model
· if \epsilon_i \sim logistic \rightarrow F = logit model
· Note: Logistic variance = \pi^2/3 \rightarrow \tilde{\beta} = \frac{\pi}{\sqrt{3}}\beta \rightarrow
  \pi(\eta) = h(x'\beta) = \Phi(x'\tilde{\beta})

    resulting prob. are ≈ equal for adjusted model
```

· Note: to compare $\widehat{\beta}_{logit}vs\widehat{\beta}_{probit} \rightarrow scale$: $\widehat{\beta}_{probit}\frac{\pi}{\sqrt{3}}$ $\log \quad \text{ratio} \quad \frac{P(y_i=1)}{P(y_i=0)}$ Interpretation: $exp(\beta_0)exp(x_1\beta_1)...$ (ex: if risk covariate cat- Note: deviance good for comparing nested models egorical then see the effect of risk present $\frac{\overrightarrow{P}(y_i=1)}{P(y_i=0)} = exp(1\widehat{\beta}_{risk}) * \dots \text{ vs} = exp(0\widehat{\beta}_{risk}) * \dots$

Grouped Data: $\{n_i|\bar{y}_i = \frac{1}{n_i}\sum_{i=1}^{n_i}y_i|x_i\}, i \in \mathbb{R}$ $\{1,..,G\}$ data grouped for identical covariates in G $y_i \in \{0,1,2,...\}$ and $f_{\beta}(y_i) = \frac{\lambda_i^{y_i}}{y_i!} exp(-\lambda_i)$ groups

 $y_i \sim Ber(\pi_i) \rightarrow \sum y_i \sim Bin(n_i, \pi_i)$

 $P_{\pi_{i}}(n_{i}\bar{y_{i}}) = P_{\pi_{i}}(\sum_{j=1}^{n_{i}} y_{j}) = (n_{i}, \sum y_{j})\pi_{i}^{\sum_{j} y_{j}}(1 - y_{j})$

 $E[\bar{y}_i] = \pi_i \to \text{logit probit model}$

 $var(\bar{y_i}) = \frac{\pi(1-\pi_i)}{n_i}$

Overdispersion: unobserved Heterogeneity or positive correlation (ex: when people sample comes from \cdot Exp Family: $f_{\theta}(y) = exp[\frac{y\theta - b(\theta)}{\phi}w + C(\phi, w, y)]$

Emprirical Var: $s = \frac{\bar{y_i}(1-\bar{y_i})}{n_i} > \frac{\widehat{\pi_i}(1-\widehat{\pi_i})}{n_i} \to \text{Overdis-} \cdot \text{Canonical Link Function:} \quad f_{\gamma} = exp[c(\gamma)T(y) - \cdot \text{ Best subset selection: } \widehat{\beta_j}\mathbb{1}(|\widehat{\beta_j}| > \sqrt{\lambda})$

· Solution: adjust model with overdispersion parameter · Note: under natural parameter: $E[y] = \frac{d}{d\theta}b(\theta)$ $var(\bar{y}_i) = \phi \frac{\pi(1-\pi_i)}{n_i}$

Max. Likelyhood Estimation

• Score Func: $s_{\beta}(y) = \frac{d}{d\beta} log(p_{\beta}(y))$

· M Est: $s_{\beta}(y)|_{\widehat{\beta}} = 0$

· Observed Fisher Info: $H(\beta) = \frac{d^2}{d^2 \beta} l(\beta)$

Fisher Information: $F(\beta) = E[s(\beta)s(\beta)']$ $E[-\frac{d}{d\beta}s(\beta)]$

· **Z** Estimator: $\frac{d}{d\beta}\widehat{R}(\beta) = \frac{1}{n}\sum_{i=1}^{n} s_{\beta}(y) = s_{\beta}(\mathbb{Y})$

· Alg. Newton : $\beta^{t+1} = \beta^{t} + H(\beta^t)^{-1} s_{\beta^t}(\mathbb{Y})$ · Alg. Fisher Scoring: $\beta^{t+1} = \beta^t + F(\bar{\beta}^t)^{-1} s_{\beta^t}(\mathbb{Y})$

· Note: $s_{\beta}(\mathbb{Y}) = \sum_{i=1}^{n} s_{\beta}(y_{i})$

· Note: $\mathbb{F}(\beta) = n\overline{F}(\beta)$

special case: $y_i \sim Ber(\pi_i) \rightarrow s_{\beta}(\mathbb{Y}) = X'(Y - \pi) \rightarrow \mathbf{ROC}$ curve: TPR vs FPR goal: reach point (0,1) $\mathbb{F}(\beta) = \sum_{i=1}^{n} x_i x_i' \pi_i (1 - \pi_i) = X' V X$

8.3 Statistical Inference

· Asymp. Theory : $\widehat{\beta}_{MLE} \stackrel{D}{\to} N(\beta, F^{-1}(\beta))$ $\cdot \widehat{cov}(\widehat{\beta}) = F^{-1}(\widehat{\beta})$ $(F^{(\beta)})_{ii} = \widehat{var}(\beta_i) = se_i^2$ standard error for β_i · **Testing:** Likelyhood ratio test $lr = 2(l(\widehat{\beta}) - l(\widetilde{\beta})) \sim$ $H_0: \beta_1 = 0 \rightarrow \beta$ $H_A: \beta_1 \neq 0 \rightarrow \tilde{\beta}$ Wald Statitic $w = (C\widehat{\beta} -$ · General Hyp: $d'(CF^{-1}(\widehat{\beta})C')(C\widehat{\beta}-d) \sim_a \chi_r^2$ Note $C=r \times p$ with rank(C) = r < p

· Model fit criteria : Deviance $D(\widehat{\pi}) = -2l(\widehat{\pi})$ explicitly compare the fit with the perfect fit $l(\tilde{\pi} = 0)$ Like kullback leiber information. The smaller the bet-

· Deviance for grouped data: Theoritical MLE known: · Interpretation: Ridge estimator shrinks the smaller $\tilde{\pi_i} = \bar{y_i}$ compare num to theoritical: D = $-2\sum_{i}^{G}(\hat{l}_{i}(\widehat{\pi}_{i})-\hat{l}_{i}(\bar{y}_{i}))$

= · Overdispersion estimation: $\hat{\phi} = \frac{1}{n-n}D$

8.4 Count Data Regression

 $E[y_i] = \lambda_i = var[y_i]$

· Log Linear model: $log(\lambda_i) = \eta_i = x_i'\beta$ · Overdispersion: variance higher in data than in model · Note: no close form

 \rightarrow adjust model $var[y_i] = \phi \lambda_i$ $\widehat{\phi} = \frac{1}{n-p}D$

8.5 Unified Framework for GLM's

 $\theta := \text{natural parameter}$

 $d(\gamma)|h(y) \to c(\gamma) := \theta$ c canonical link function

Summary: natural paramter modelled as linear $c(\gamma) = \theta = n = x'\beta$

8.6 Classification Metrics

· Goal: use predicted probabilities to classify (predict) new data: $y_{new} = \mathbb{1}(\hat{pi} > t) \in \{0,1\}$ with t being the threshold

= $\hat{\pi} = \frac{exp(x_{new}\hat{\beta})}{1}$ $1 + exp(x_{new}\widehat{\beta})$

· if t = 0 no mistake on oservation =1

· Accuracy: $\frac{TP+TN}{T}$

· Sensitivity: $TPR = \frac{TP}{TP + FN}$ (Recall)

• Specificity: $TNR = \frac{TN}{TN + FP}$ • $FPR = 1 - spec = \frac{FP}{TN + FP}$

and think threshold goes $1 \to 0$ left to right

Penalized Regression

· Context: If model is well specified the OLS estimator is unbiased but may have high variance → think subset of coeff that are close to zero bring the same variance as other coeff into the model. Overall idea is to trade some bias to reduce variance

Case: if there is strong collinearity between covariates $\rightarrow X'X$ instable

· Case: High dimensional Regression p > n

Goal: reduce SPSE by trading bias for some vari-

Penalized Regr. : $PLS(\beta) = ||Y - X\beta||^2 +$

Ridge: $pen(\beta) = ||\beta||^2 \rightarrow \widehat{\beta}_{ridge} = (X'X+I)^{-1}X'Y$ SVD: X = UDV' with col(U) = Span(X) and $\begin{array}{c} U'U = I \text{ with } U \in R^{n \times p} \\ \cdot X \widehat{\beta}_{ridge} = \sum_{j=1}^{p} u_j \frac{d_j}{d_j + \lambda} u'_j Y \end{array}$

principal component which correspond to small sample variances.

 $\cdot cov[\widehat{\beta}_{ridge}] \leq cov[\widehat{\beta}_{OLS}]$ BUT biased

Ridge need covariates and response to be scaled and centered (centered because no penalty on intercept and scale because contrain on β so β_i must be of the same scale)

· Amount of shirnkage controlled by λ

· choosing $\lambda \to CV$ minimizing the SPSE and choose the simplest model

• LASSO: $pen(\beta) = |\beta|_1 \rightarrow ||Y - X\beta||^2 + \lambda \sum_{i=1}^{p} |\beta_i|$

 $(\beta) + \hat{\epsilon}' \hat{\epsilon} \rightarrow \text{ELLIPSOID}$ (plot contour form and constraint on β)

· LASSO shrink coefficient to zero (more shrinkage for small coeff but less for big coeff)

Comparison of shrinkage: Assume X'X = Iorhtogonal design and $\widehat{\beta}_i$ is OLS estimate

· Ridge: $\widehat{\beta}_i/(1+\lambda)$

LASSO: $sgn(\widehat{\beta}_i)max\{|\widehat{\beta}_i| - \lambda/2\}$

Note on LASSO: it performs soft thresholding and is like automatic variable selection as the coefficients are set to zero.

10 Maths Tricks Tutorials

Sub Differentials:

3

- (i) Convex Subset: A subset $X \subseteq \mathbf{R}^k$ is called a convex subset iff $\forall x_1, x_2 \in X$, the segment that link them is contained in X
- (ii) Convex Function: Let X be a convex subset and $f: X \to \mathbf{R}$ a function. Then f is convex iff $\forall x_1, x_2 \in X \text{ and } \forall t \in [0, 1]$

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$$

(iii) Subdifferentials: Let $f: I \to \mathbf{R}$ a real valued convex function on the open interval I. The subdifferential of f at $x_0 \in I$ is the set [a, b] where

$$a = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}$$

$$b = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$$

- (iv) If f differential at x_0 then $a = b \implies [a, b] =$ $\{f'(x_0)\}\$
- (v) **Proposition**: $x_0 \in I$ is a global minimum of f iff zero is contained in the subdifferential at x_0